

# **Exploratory PEPR**



# NumPEx

High Performance Numerics for Exascale

Dr J. BOBIN CEA, co-director of NumPEx
Pr M. DAYDE CNRS, co-director of NumPEx
Dr J-Y. BERTHOU INRIA, co-director of NumPEx

# Towards the Exascale: challenges



**Applications** 

Preparing the applications for the Exascale era requires a major effort to re-design the software stack, by co-design

## In the national ecosystem



NumPEx as the software/middleware component of France Exascale

## NumPEx, an overview

Prepare the applications for the Exascale era

Contribute/accelerate to the emergence of a European Software Stack and strategic applications Exascale capability

NumPEx

Aggregate the French
HPC/HPDA/IA
Community

Accelerate science/engineering-driven developers training and software productivity

Integrate/validate co-designed methods/libraires with demonstrators and strategic appli.

# NumPEx Organisation





**Applications** 

### NumPEx software stack





# NumPEx, ExaMA

Methods/Algorithms for the Exascale

Discretization



Reduced order and Al-driven methods for multi-fidelity modelling

PC1-ExaMA

Methods/Algorithms
for the Exascale

Linear, multi-linear and coupled solvers

Combine data and models, inverse problems

Optimize at Exascale

Quantify uncertainties

# NumPEx, ExaSoft

HPC software/tools for the Exascale

High-level approaches for developing efficient and composable parallel software

Just-in-Time code optimization with continuous feedback loop

PC2-ExaSoft

HPC softwares/tools for the Exascale

Runtime Systems at Exascale

Portable, scalable numerical building blocks and software

Performance analysis and prediction

Energy profiling and control

## NumPEx, ExaDost

Data-oriented sfotwares/tools for the Exascale

Exascale I/O and storage

Exascale in-situ data processing

PC3-ExaDost

Data-oriented softwares/tools
for the Exascale

Exascale ML-based data analytics



## NumPEx, Exa-AToW

Architectures and tools for large-scale workflows

Federation of network, data, and compute resources

Metadata Centric Approach

PC4-ExaAToW

Architectures/tools for large-scale workflows

Machine Actionable Data/Project Plan

Data Logistic

Application & Workflow Support

Federation Governance



### NumPEx ExaDIP

Application-driven co-design software development, integration and productivity

Co-design management

Co-design

PC5-ExaDIP

Application-driven co-design

Integration and productivity

Training



**Applications** 

# NumPEx, co-design

Application-driven co-design software development, integration and productivity

# Identify/develop common/transverse algorithmic/library motifs





# NumPEx, co-design demonstrators

# **Application Demonstrator**

What is an Application Demonstrator

### **Objective:**

Accelerate the development and enhance the capability and the performance of strategic CSE applications

High-impact science and engineering exascale challenge problem

Detailed criteria for assessing successful completion of challenge problem

A figure of merit (FOM) formula quantifying performance or capability enhancement of challenge

Demonstration and assessment of effective software integration with demonstrators



Astronomy & Astrophysics

**Climate** 

Earth system & environment



Plasmas physics and accelerators

Particle physics

Quantum chemistry and materials





### **NumPeX Application Demonstrators**

- Addressing on a science and engineering Exascale challenge problem
- Enabled by combined deployment and use of interoperable models, software components and technologies (crossing different NumPeX PCs
- Driven by community practices and CSE application development methodologies
- Assessed by measuring rate of science work enabled by successful and possibly inter-dependent developments.

# NumPEx, co-design integration/productivity

Application-driven co-design software development, integration and productivity



- Logical application-driven collections of value-added interoperable software components
- Integrated and packaged using common meta-builder systems enabling combined deployment of software components as needed by CSE applications

# NumPEx, sum-up NumPEx : organisation



# NumPEx, sum-up

PC1-ExaMA

Methods/Algorithms for the Exascale

*6.4M€* 

Call for proposal 4M€

PC0

Coordination/Governance

*3.8M€* 

PC2-ExaSoft

HPC softwares/tools for the Exascale

6.2M€

PC5-ExaDIP

Application-driven co-design

*9M€* 

Board of directors

committee

**Project** office

Industrial board

Steering

PC3-ExaDost

Data-oriented softwares/tools for the Exascale

5.9M€

PC4-ExaAToW

Architectures/tools for large-scale workflows

*5.3M€* 

**Programme management** 

Communication/dissemination

**Training** 

# NumPEx, take-away messages

### NumPEx is an ambitious program to:

- prepare the scientific/engineering applications for the forthcoming HPC syst.
- contribute to the French/European software stack for future Exascale systems
  - bridge the gap between the computer science/application communities
  - help building a community for advanced scientific software development

# Open to propositions of applicative demonstrators! Many job openings too!

www.numpex.fr

### NumPEx: towards a consistent software stack





## PC1-ExaMA-Methods and algorithms

WP1-Discretization

WP2-Reduced order and AI-driven methods for multi-fidelity modelling

WP3-Linear, multi-linear and coupled solvers at Exascale

WP4-Combine data and models, inverse problems at Exascale

WP5-Optimize at Exascale

WP6-Quantify uncertainties

WP7-Demonstrators



### PC2-ExaSOFT-HPC softwares and tools

WP1-High-level approaches for developing efficient and composable parallel software

WP2-Just-in-Time code optimization with continuous feedback loop

WP3-Runtime Systems at Exascale

WP4-Portable, scalable numerical building blocks and software

WP5-Performance analysis and prediction

WP6-Energy profiling and control

WP7-Demonstrators



### PC3-ExaDOST-Data-oriented softwares and tools

WP1-Exascale I/O and storage

WP2-Exascale in-situ data processing

WP3-Exascale ML-based data analytics

WP4-Demonstrators



### NumPEx: Exascale in the data continuum

#### Integrated Projects (IP)

PC 4: Wide-area exascale workflows and architecture

- Data logistic between data sources (e.g. large scientific instruments) and the Exascale system
- Cybersecurity and environmental sustainability focus
- Promoting EU technology (e.g. Atos data node and edge servers)



## PC4-ExaATOW-Architectures and tools for large-scale workflows

WP1-Federation of network, data, and compute resources

WP2-Metadata Centric Approach

WP3-Machine Actionable Data/Project Plan

WP4-Data Logistic

WP5-Application & Workflow Support

WP6-Federation Governance



## NumPEx: co-design

# PC 5: Co-design development, motifs and demonstrators, software productivity

#### Motifs and demonstrators

Identify and define co-design motifs across domain demonstrators and NumPeX PC 1-4

Push R&D demonstrators requirements into software R&D (PC 1-4)
Push integrated software developments into demonstrators





Climate

Earth system & environment

Plasmas physics and accelerators

Particle physics

Quantum chemistry and materials

**Energy** 

Biology and Health science

Industrial applications











### NumPEx: co-design

PC 5: Co-design development, software productivity, and demonstrators

Motifs and demonstrators



### NumPEx Exascale Scientific Software Stack (NE3S)

Robust (tested, CI)
Packaged and deployable
Interoperable
Documented, open source, bug tracking, user forums
Hardware portable (processors, accelerators)



# PC5-ExaDIP-Application-driven co-design software development, integration and productivity

WP1-Co-design management

WP2-Co-design

WP3-Integration and productivity

WP4-Training



## **Application demonstrator**

# **Application Demonstrator**

What is an Application Demonstrator

### **Objective:**

Accelerate the development and enhance the capability and the performance of strategic CSE applications

High-impact science and engineering exascale challenge problem

Detailed criteria for assessing successful completion of challenge problem

A figure of merit (FOM) formula quantifying performance or capability enhancement of challenge

Demonstration and assessment of effective software integration with demonstrators







Earth system & environment



Particle physics

Quantum chemistry and materials







### **NumPeX Application Demonstrators**

- Addressing on a science and engineering Exascale challenge problem
- Enabled by combined deployment and use of interoperable models, software components and technologies (crossing different NumPeX PCs
- Driven by community practices and CSE application development methodologies
- Assessed by measuring rate of science work enabled by successful and possibly inter-dependent developments.

### Transversal issues/actions





RESILIENCE