1/18

V4

lrezia—

5£BLIQUE Com pOSyX
FRANCAISE

Liberté
Egalité
Fraternité

Emmanuel AGULLO, Luc GIRAUD,
C Arthur GOUINGUENET, Gilles MARAIT

DE RECHERCHE

NUMERIQUE
_/ POUR L'EXASCALE

@88 AIRBUS = CERFACS Lroda—

=2aCONCACE

Exa-MA Annual Meeting - January 20™ 2026

Contents

1. Composyx in a nutshell
2. Installing Composyx
3. Using Composyx

Composyx in a nhutsheli

Composyx in a nutshell 4118

Composyx is a C++ header-only linear algebra package.

» Scope: sparse, dense, randomized linear algebra
* Implemented in C++20 with concepts (soon C++23).
* Provides a high-level interface for prototyping, close to Matlab or python.
» Possibility to dig deeper to low-level interfaces for performance.
« Literate programming in org-mode: check out our beautiful documentation.
e Supercomputers
» Supports distributed memory parallelism
» Task-based support
» GPU-only implementation, currently only CUDA, compatible with distributed parallelism
» Experimental features for variable accuracy and mixed-precision.
* Many tutorials and examples to use Composyx for linear algebra or from an numerical
application.

https://orgmode.org/fr/
https://composyx.gitlabpages.inria.fr/composyx/
https://composyx.gitlabpages.inria.fr/composyx/#orgd95aedf
https://gitlab.inria.fr/composyx/Examples

Installing Composyx

Header-only version

To test Composyx with minimal dependencies, a header-only implementation is sufficient.

git clone --recursive https://gitlab.inria.fr/composyx/composyx.git
COMPOSYX INCLUDES="realpath composyx/include’
TLAPACK INCLUDES="realpath composyx/tlapack/include’

g++ -std=c++20 -I${COMPOSYX INCLUDES} -I${TLAPACK INCLUDES} my composyx code.cpp

Header-only installation

Relies on <T>LAPACK header-only BLAS/LAPACK implementation
Perfect to test Composyx without any installation step

Only a subset of Composyx

Only for prototyping, no expectation for performance

https://github.com/tlapack/tlapack

Installation with guix

n -

‘ GNU guix is a cross-platform package manager with a strong focus on
Guix software reproducibility.

Composyx is available as a package in guix-science.

guix shell composyx -- composyx driver cg

guix installation

* When guix is available, deployment of an environment with Composyx and most of
its important dependencies is easy, fast and reliable

* Environment is well controlled and reproducible for scientific experiments
» Possibility to use non-free HPC software (mkl, cuda, ...)

https://guix.gnu.org/
https://codeberg.org/guix-science

Installation with composyx-superbuild

A CMake based automatic installation is available through composyx-superbuild. This is the
preferred solution when guix is not available.

git clone https://gitlab.inria.fr/composyx/composyx-superbuild.git
cd composyx-superbuild

cmake -B build

cmake --build build/

Installation with composyx-superbuild

Download and install with CMake Composyx and its dependencies automatically
Basic dependencies must be installed already: CMake, MPI, blas, git, python...
Possibility to download dependencies in a tarball and then deploy them without
internet access on a supercomputer

Possibility to choose which dependencies to use with Composyx

https://gitlab.inria.fr/composyx/composyx-superbuild

Other installation methods

Other methods are available to install Composyx.

A spack package of Composyx is available on the official repository.

For MacOS users, a brew package is available.

Manual installation

Composyx uses CMake and dependencies to be used are configurable. Manual
installation is still a good solution for advanced users or when few dependencies are
necessary.

https://github.com/spack/spack-packages/blob/develop/repos/spack_repo/builtin/packages/composyx/package.py
https://gitlab.inria.fr/solverstack/brew-repo

Using ComposyXx

High level interface

Special operators in composyx

* operator* apply an operator to a vector: y = A * X

* operator~ compute an inverse (or genealized inverse) of an operator A_inv = ~A

* operator% apply a genealized inverse operator to a vector (as the operator \ in
Matlab) x =A% b < x=~A*Db

BLAS/LAPACK-like functions

blas kernels::axpy(u, v, Scalar{2}); // v <- 2 * u + v

High level functions returning tuples

auto [Q, R] = blas kernels::qr(A);
auto [U, S, V] = blas kernels::svd(A);

High level interface example

Call a BLAS operation

using namespace COmMPOSYX;
using Vect = Vector<Scalar>;
using Mat = DenseMatrix<Scalar>;

const Vect u{l, 2, 3, 4};
Vect v{10, 20, 30, 40};
// VvV <-V + 2 *uU

/] ---
// Write directly
vV += 2 * u;

e U e
// Use blas interface
blas kernels::axpy(u, v, Scalar{2});

Solve a system

const Mat A({1, 2, 3,

4, 5, 6,

7, 8, 9}, 3, 3);
const Vect b{30, 20, 10};

// ---

// Instanciate solver manually
BlasSolver<Mat, Vect> solver(A);
Vect x = solver * b;

J === UIE =e-
// Use the operator ~
auto solver = ~A;

Vect x = solver * b;

=00 U oes
// Use operator %
Vect x = A % b;

Domain decomposition-like interface

K is the global sparse matrix representing the system to solve.

K partitioned, interior edges are colored,

K global adjacency graph interface edges are black

KO K1 K?2

Domain decomposition-like interface

Specific datatypes are used for this purpose:

* PartMatrix to describe the matrices

* PartVector to describe the vectors

* PartOperator to use other operators (typically solvers)

» Dedicated preconditioners can be used on iterative solvers

Then Composyx solvers can be used transparently on those datatypes.

Solve a system

const PartMatrix<SparseMatrixCSR<Scalar>> A(/* ... */);

const PartVector<Vector<Scalar>> b{/* ... */};

using SparseDirectSolver = Mumps<SparseMatrixCSR<Scalar>, Vector<Scalar>>;

using Pcd = AdditiveSchwarz<decltype(A), decltype(B), SparseDirectSolver>;

ConjugateGradient<PartMatrix<SparseMatrixCSR<Scalar>>,
PartVector<Vector<Scalar>>, Pcd> cg(A);

auto x = cg * b;

Special types in Composyx to handle vectors and matrices on a CUDA device:

On CPU On GPU
Vector<Scalar> CudaVec<Vector<Scalar>>
DenseMatrix<Scalar> CudaDense<DenseMatrix<Scalar>>

SparseMatrixCSR<Scalar>

CudaSparse<SparseMatrixCSR<Scalar>>

Then the code is almost the same as for CPU.

using namespace COmMpPOSYX;

using Vect = CudaVec<Vector<Scalar>>;

using Mat = CudaDense<DenseMatrix<Scalar>>;
const Vect u{l, 2, 3, 4};

Vect v{10, 20, 30, 40};

// vV <- v+ 2 *u

vV += 2 * u;

RN

cuda blas kernels::axpy(u, v, Scalar{2});

const PartMatrix<CudaSparse<SparseMatrixCSR<Scalar>>>
A(/* ... */);

const PartVector<CudaVec<Vector<Scalar>>> b{/* */};
using SparseDirectSolver = CudaSparseSolver<Scalar>>;
using Pcd = AdditiveSchwarz<decltype(A), decltype(B),
SparseDirectSolver>;

ConjugateGradient<decltype(A),decltype(B),Pcd> cg(A);
auto x = cg * b;

Results on GPU 16/ 18

Results on Jean-Zay v100 partition, weak scaling, with 1 GPU per subdomain and 4 GPU per
node.

Preconditioners:

* 0: no preconditioner

o AS: Additive Schwarz

« ASG+: Additive Schwarz + geneo additive coarse correction

1972
Solver step:
B schur computation
. Impl. Schur computation
B tterative solve
B other time

438 III

0 AS ASG+
38 53
125
+ 47 79

110

q: 'ﬁ,v'b N D b
¥ P S @,{9

Tlme (s)

Number of domalns

Composyx roadmap 2025 - 2029

Composyx: EPCII CONCACE (Airbus CRT, Cerfacs, Inria)

2025 2026 2027 2028 2029
Ingénieur ExaMA
|
ExaMA ExaMA
Hawen (Makutu) Diogenes (Atlantis)
Applications

EoCoE Airbus, Open source

SOD2D OpenTURNS
I I I

Airbus Airbus, CERFACS

méthodes FEM-BEM CODA
! !
Solver multigrille
y I
COMPOSYX l—» Support GPUNVIDIA |, Support GPU AMD =|| Alice Recoque
(CUDA) (ou portable sur autres architectures)
Interfaces génériques std ::mdspan,
std ::linalg...
APl asynchrone N Chameleon N Qr-MUMPS
Définition, conception logicielle asynchrone asynchrone
I
10/12/2025

18/18

Thank you for your attention

Repository: https://gitlab.inria.fr/composyx/composyx

Documentation: https://composyx.gitlabpages.inria.fr/composyx/

Tutorial: https://composyx.gitlabpages.inria.fr/composyx/main/tutorial/tuto.html
Examples: https://gitlab.inria.fr’composyx/Examples

https://gitlab.inria.fr/composyx/composyx
https://composyx.gitlabpages.inria.fr/composyx/
https://composyx.gitlabpages.inria.fr/composyx/main/tutorial/tuto.html
https://gitlab.inria.fr/composyx/Examples

Test case 18118

Stationary heterogeneous diffusion equation (or Darcy equation) in a 3D stratified medium:

V- (kVu) =1

each subdomain consists in 60 x 60 x 60 = 216 000 unknowns;

interfaces between two adjacent subdomains have 60 x 60 = 3 600 unknowns;
benchmark in weak scaling (subdomains are stacked on along an axis)
we use one subdomain per GPU, nyg = ngpu

Nsd 4 8 16 32 64 128 256
Size K |853 200 (1 702 800 | 3 402 000 | 6 800 400 |13 597 200 |27 190 800 | 54 378 000
Size § |10 800 |25 200 54 000 111 600 | 226 800 457 200 918 000

Test case 18/ 18

Test case

 Preconditioners:

Environment

» 0: no preconditioner
: ?nct;-lollr;z:pi-mkl 2023.1 (unused?) » AS: Additive Schwarz
. ' ' » ASG+: Additive Schwarz + geneo
* openmpi 4.1.8 additive coarse correction
 cuda toolkit (12.8 to check)
e cudss-0.7.1.4 * Number of eigenvectors for ASG+
preconditioner ne, = 3

« Stopping criterion: ”bmx" <10—38

Hardware 18/ 18

We run on the Jean Zay supercomputer, v100
partition:

» 396 nodes with 4 GPUs per node:

2 CPUs Intel Xeon Gold 6248 (20 cores at 2.5
GHz), hence 40 cores per node

192 GB of memory per node

270 nodes with 4 GPUs Nvidia Tesla V100

i SXM2 32 GB

Max reservation is 256 GPU (64 nodes)
Interconnect: Omni-path 100 series, 25 GB/s

v

VAL T
RO

v

v

v

Jean Zay supercomputer, copyright Photothéque
CNRS/Cyril Frésillon

v

	 Composyx in a nutshell
	 Installing Composyx
	 Using Composyx

