
1 / 18

Composyx

Emmanuel AGULLO, Luc GIRAUD,

Arthur GOUINGUENET, Gilles MARAIT

Exa-MA Annual Meeting - January 20
th
 2026

Contents

1. Composyx in a nutshell

2. Installing Composyx

3. Using Composyx

Composyx in a nutshell

Composyx in a nutshell 4 / 18

Composyx is a C++ header-only linear algebra package.

• Scope: sparse, dense, randomized linear algebra

• Implemented in C++20 with concepts (soon C++23).

• Provides a high-level interface for prototyping, close to Matlab or python.

• Possibility to dig deeper to low-level interfaces for performance.

• Literate programming in org-mode: check out our beautiful documentation.

• Supercomputers

‣ Supports distributed memory parallelism

‣ Task-based support

‣ GPU-only implementation, currently only CUDA, compatible with distributed parallelism

• Experimental features for variable accuracy and mixed-precision.

• Many tutorials and examples to use Composyx for linear algebra or from an numerical

application.

https://orgmode.org/fr/
https://composyx.gitlabpages.inria.fr/composyx/
https://composyx.gitlabpages.inria.fr/composyx/#orgd95aedf
https://gitlab.inria.fr/composyx/Examples

Installing Composyx

Header-only version 6 / 18

To test Composyx with minimal dependencies, a header-only implementation is sufficient.

git clone --recursive https://gitlab.inria.fr/composyx/composyx.git

COMPOSYX_INCLUDES=`realpath composyx/include`

TLAPACK_INCLUDES=`realpath composyx/tlapack/include`

g++ -std=c++20 -I${COMPOSYX_INCLUDES} -I${TLAPACK_INCLUDES} my_composyx_code.cpp

Header-only installation

• Relies on <T>LAPACK header-only BLAS/LAPACK implementation

• Perfect to test Composyx without any installation step

• Only a subset of Composyx

• Only for prototyping, no expectation for performance

https://github.com/tlapack/tlapack

Installation with guix 7 / 18

GNU guix is a cross-platform package manager with a strong focus on

software reproducibility.

Composyx is available as a package in guix-science.

guix shell composyx -- composyx_driver_cg

guix installation

• When guix is available, deployment of an environment with Composyx and most of

its important dependencies is easy, fast and reliable

• Environment is well controlled and reproducible for scientific experiments

• Possibility to use non-free HPC software (mkl, cuda, …)

https://guix.gnu.org/
https://codeberg.org/guix-science

Installation with composyx-superbuild 8 / 18

A CMake based automatic installation is available through composyx-superbuild. This is the

preferred solution when guix is not available.

git clone https://gitlab.inria.fr/composyx/composyx-superbuild.git

cd composyx-superbuild

cmake -B build

cmake --build build/

Installation with composyx-superbuild

• Download and install with CMake Composyx and its dependencies automatically

• Basic dependencies must be installed already: CMake, MPI, blas, git, python…

• Possibility to download dependencies in a tarball and then deploy them without

internet access on a supercomputer

• Possibility to choose which dependencies to use with Composyx

https://gitlab.inria.fr/composyx/composyx-superbuild

Other installation methods 9 / 18

Other methods are available to install Composyx.

Spack

A spack package of Composyx is available on the official repository.

Brew

For MacOS users, a brew package is available.

Manual installation

Composyx uses CMake and dependencies to be used are configurable. Manual

installation is still a good solution for advanced users or when few dependencies are

necessary.

https://github.com/spack/spack-packages/blob/develop/repos/spack_repo/builtin/packages/composyx/package.py
https://gitlab.inria.fr/solverstack/brew-repo

Using Composyx

High level interface 11 / 18

Special operators in composyx

• operator* apply an operator to a vector: y = A * x

• operator~ compute an inverse (or genealized inverse) of an operator A_inv = ~A

• operator% apply a genealized inverse operator to a vector (as the operator \ in

Matlab) x = A % b ⇔ x = ~A * b

BLAS/LAPACK-like functions

blas_kernels::axpy(u, v, Scalar{2}); // v <- 2 * u + v

High level functions returning tuples

auto [Q, R] = blas_kernels::qr(A);

auto [U, S, V] = blas_kernels::svd(A);

High level interface example 12 / 18

Call a BLAS operation

using namespace composyx;

using Vect = Vector<Scalar>;

using Mat = DenseMatrix<Scalar>;

const Vect u{1, 2, 3, 4};

Vect v{10, 20, 30, 40};

// v <- v + 2 * u

// ---

// Write directly

v += 2 * u;

// --- Or ---

// Use blas interface

blas_kernels::axpy(u, v, Scalar{2});

Solve a system

const Mat A({1, 2, 3,

 4, 5, 6,

 7, 8, 9}, 3, 3);

const Vect b{30, 20, 10};

// ---

// Instanciate solver manually

BlasSolver<Mat, Vect> solver(A);

Vect x = solver * b;

// --- Or ---

// Use the operator ~

auto solver = ~A;

Vect x = solver * b;

// --- Or ---

// Use operator %

Vect x = A % b;

Domain decomposition-like interface 13 / 18

𝐾 is the global sparse matrix representing the system to solve.

𝐾 global adjacency graph

0 1 2 3 4 5 6
0 x x x x
1 x x x x
2 x x x x x
3 x x x x x x
4 x x x
5 x x x x x
6 x x x x

𝐾 partitioned, interior edges are colored,

interface edges are black

0 1 2 3 4 5 6
0 x x x x
1 x x x x
2 x x x x x
3 x x x x x x
4 x x x
5 x x x x x
6 x x x x

𝐾0

0 1 2 3
0 x x x
1 x x x x
2 x x x
3 x x x x

𝐾1

0 1 2 3
0 x x x
1 x x x x
2 x x x
3 x x x x

𝐾2

0 1 2 3
0 x x x
1 x x x x
2 x x x
3 x x x x

Domain decomposition-like interface 14 / 18

Specific datatypes are used for this purpose:

• PartMatrix to describe the matrices

• PartVector to describe the vectors

• PartOperator to use other operators (typically solvers)

• Dedicated preconditioners can be used on iterative solvers

Then Composyx solvers can be used transparently on those datatypes.

Solve a system

const PartMatrix<SparseMatrixCSR<Scalar>> A(/* ... */);

const PartVector<Vector<Scalar>> b{/* ... */};

using SparseDirectSolver = Mumps<SparseMatrixCSR<Scalar>, Vector<Scalar>>;

using Pcd = AdditiveSchwarz<decltype(A), decltype(B), SparseDirectSolver>;

ConjugateGradient<PartMatrix<SparseMatrixCSR<Scalar>>,

 PartVector<Vector<Scalar>>, Pcd> cg(A);

auto x = cg * b;

GPU 15 / 18

Special types in Composyx to handle vectors and matrices on a CUDA device:

On CPU On GPU

Vector<Scalar> CudaVec<Vector<Scalar>>

DenseMatrix<Scalar> CudaDense<DenseMatrix<Scalar>>

SparseMatrixCSR<Scalar> CudaSparse<SparseMatrixCSR<Scalar>>

Then the code is almost the same as for CPU.

using namespace composyx;

using Vect = CudaVec<Vector<Scalar>>;

using Mat = CudaDense<DenseMatrix<Scalar>>;

const Vect u{1, 2, 3, 4};

Vect v{10, 20, 30, 40};

// v <- v + 2 * u

v += 2 * u;

// --- Or ---

cuda_blas_kernels::axpy(u, v, Scalar{2});

const PartMatrix<CudaSparse<SparseMatrixCSR<Scalar>>>

A(/* ... */);

const PartVector<CudaVec<Vector<Scalar>>> b{/* */};

using SparseDirectSolver = CudaSparseSolver<Scalar>>;

using Pcd = AdditiveSchwarz<decltype(A), decltype(B),

SparseDirectSolver>;

ConjugateGradient<decltype(A),decltype(B),Pcd> cg(A);

auto x = cg * b;

Results on GPU 16 / 18

Results on Jean-Zay v100 partition, weak scaling, with 1 GPU per subdomain and 4 GPU per

node.

Preconditioners:

• 0: no preconditioner

• AS: Additive Schwarz

• ASG+: Additive Schwarz + geneo additive coarse correction

438

605

766

956

1322

1972

438

605

766

956

1322

1972

438

605

766

956

1322

1972

438

605

766

956

1322

1972

12
20

29 47
79 125

306

12
20

29 47
79 125

306

12
20

29 47
79 125

306

12
20

29 47
79 125

306

18

27

38 53
75

110

18

27

38 53
75

110

18

27

38 53
75

110

18

27

38 53
75

110

0 AS ASG+

4 8 16 32 64 12
8

25
6 4 8 16 32 64 12

8
25

6 4 8 16 32 64 12
8

25
6

0

10

20

30

Number of domains

T
im

e
 (

s
)

Solver step:

Schur computation

Impl. Schur computation

Iterative solve

Other time

Composyx roadmap 2025 - 2029 17 / 18

Concace 1 Concace 2

10/12/2025 8

Composyx: EPCII CONCACE (Airbus CRT, Cerfacs, Inria)
2025 2026 2027 2028 2029

Support GPU NVIDIA(CUDA)COMPOSYX

Solver multigrille
Support GPU AMD(ou portable sur autres architectures)

Airbusméthodes FEM-BEM

API asynchroneDéfinition, conception logicielle

Airbus, CERFACSCODA

Airbus, Open sourceOpenTURNS

Interfaces génériques std ::mdspan,std ::linalg...

EoCoESOD2D

ExaMAHawen (Makutu) ExaMADiogenes (Atlantis)

Ingénieur ExaMA

Chameleonasynchrone Qr-MUMPSasynchrone

Alice Recoque

Applications

18 / 18

Thank you for your attention

Useful links

• Repository: https://gitlab.inria.fr/composyx/composyx

• Documentation: https://composyx.gitlabpages.inria.fr/composyx/

• Tutorial: https://composyx.gitlabpages.inria.fr/composyx/main/tutorial/tuto.html

• Examples: https://gitlab.inria.fr/composyx/Examples

https://gitlab.inria.fr/composyx/composyx
https://composyx.gitlabpages.inria.fr/composyx/
https://composyx.gitlabpages.inria.fr/composyx/main/tutorial/tuto.html
https://gitlab.inria.fr/composyx/Examples

Test case 18 / 18

Stationary heterogeneous diffusion equation (or Darcy equation) in a 3D stratified medium:

∇ · (𝑘∇𝑢) = 1

• each subdomain consists in 60 × 60 × 60 = 216 000 unknowns;

• interfaces between two adjacent subdomains have 60 × 60 = 3 600 unknowns;

• benchmark in weak scaling (subdomains are stacked on along an axis)

• we use one subdomain per GPU, 𝑛sd = 𝑛GPU

𝑛sd 4 8 16 32 64 128 256

Size 𝐾 853 200 1 702 800 3 402 000 6 800 400 13 597 200 27 190 800 54 378 000

Size 𝑆 10 800 25 200 54 000 111 600 226 800 457 200 918 000

Test case 18 / 18

Environment

• gcc-14.2.0

• intel-oneapi-mkl 2023.1 (unused?)

• openmpi 4.1.8

• cuda toolkit (12.8 to check)

• cudss-0.7.1.4

Test case

• Preconditioners:

‣ 0: no preconditioner

‣ AS: Additive Schwarz

‣ ASG+: Additive Schwarz + geneo

additive coarse correction

• Number of eigenvectors for ASG+

preconditioner 𝑛ev = 3

• Stopping criterion:
‖𝑏−𝐴𝑥‖

‖𝑏‖ < 10 − 8

Hardware 18 / 18

Jean Zay supercomputer, copyright Photothèque

CNRS/Cyril Frésillon

We run on the Jean Zay supercomputer, v100

partition:

• 396 nodes with 4 GPUs per node:

‣ 2 CPUs Intel Xeon Gold 6248 (20 cores at 2.5

GHz), hence 40 cores per node

‣ 192 GB of memory per node

‣ 270 nodes with 4 GPUs Nvidia Tesla V100

SXM2 32 GB

‣ Max reservation is 256 GPU (64 nodes)

‣ Interconnect: Omni-path 100 series, 25 GB/s

	 Composyx in a nutshell
	 Installing Composyx
	 Using Composyx

