
Feel++
Finite Element Embedded Library in C++
Modern Architecture for Exascale Com-
puting
Version: 4c61980 (2025-12-10 14:52:27 +0100)

Christophe Prud’homme
January 20, 2026

Cemosis / IRMA – Université de Strasbourg – NumPEx



What is Feel++?

A Full Computational Pipeline

Modern C++ framework (C++20/C++23) for mono & multi-physics: ad-
vanced methods + toolboxes + MOR

Methods
• Continuous Galerkin (CG)
• Discontinuous Galerkin (DG)
• Hybridized DG (HDG)
• Low to high-order (incl.
geometry)

• Model order reduction

Capabilities
• 1D, 2D, 3D geometries
• MPI parallelization
• GPU portability (in progress)
• Multi-physics coupling
• Python bindings

Repository: https:∕∕github.com∕feelpp∕feelpp • 800+ tests • v0.111.0

Feel++ Christophe Prud’homme 1

https://github.com/feelpp/feelpp


Feel++ in the NumPEx/Exa-MA Context

WP1 –Discretization&Geometry
• Low to high-order FE (incl.
geom)

• Space/time adaptivity
• Multi-physics coupling

WP2 – Model Order Reduction
• Nonlinear Compressive RB
(NLCRB)

• ML-accelerated coefficients
• C++20 MOR architecture

WP3 – Solvers & Preconditioners
• PETSc/SLEPc integration
• Block structure exposure
• Multi-physics coupling

WP4 (DA) & WP6 (UQ):
GEIM/PBDW, EnKF, sensor
placement, multi-query UQ

Feel++ Christophe Prud’homme 2



Architecture Overview

Applications & Toolboxes

Fluid Heat FSI Maxwell MOR

Feel++ Core Library

Mesh FE Algebra VF Models

Backends: PETSc, Kokkos, Python

Feel++ Christophe Prud’homme 3



Recent Developments: C++20 Refactoring

Modern C++ Architecture (C++20 features, C++23 ready)

Major refactoring efforts leveraging C++20 features:

Runtime Order Selection:
• FE and geometry order at
runtime

• C++20 concepts for type safety
• No code duplication
• Enables adaptive methods

Tensor Rank System:
• Compile-time classification
• Scalar/Vector/Matrix/Tensor3

MOR/ROM Refactoring:
• Explicit offline/online API
• Concepts-based contracts
• Pluggable hyper-reduction
• NLCRB (WP2), DA (WP4)

GPU Portability (2025–2026):
• Kokkos integration
• CUDA/HIP backends

Feel++ Christophe Prud’homme 4



C++20 Refactoring: Runtime Order Selection

Key Innovation

C++20 enables runtime-selectable FE and geometry order without code
duplication or performance loss

Before (compile-time)
• Order fixed at compile time
• Code bloat for each order
• Hard to do hp-adaptivity

After (runtime)
• Order selected at runtime
• Single code path
• Enables hp-adaptivity, MOR

Applications: Adaptive methods • MOR basis construction • Multi-fidelity
workflows

Feel++ Christophe Prud’homme 5



C++20 Concepts: Why It Matters

Core Insight

C++20 concepts replace implicit conventions with explicit, compiler-
enforced contracts: safer APIs, better errors, no virtual dispatch→ GPU-
ready design

Before (C++14/17)
• Implicit template
requirements

• Cryptic error messages
• SFINAE-based dispatch

After (C++20)
• Explicit concept definitions
• Clear, actionable errors
• Static polymorphism
(GPU-ready)

Key feature: Runtime-selectable polynomial order without code
duplication—critical for adaptive methods and MOR

Feel++ Christophe Prud’homme 6



MOR/ROM Architecture Refactoring

Motivation

Support NLCRB (WP2), GEIM/PBDW (WP4), and multi-query UQ (WP6)
with clean architecture

Design Principles
• Explicit offline/online
separation

• Concepts over conventions
• Pluggable hyper-reduction

First-Class Objects
• ParameterSpace
• Model, BasisBuilder
• OnlineSolver

Benefit: Predictable data-flow, cacheable operators, compile-time validation

Feel++ Christophe Prud’homme 7



Spack Integration for NumPEx

Modern Package Management

Feel++ is integrated into the NumPEx Spack ecosystem for reproducible
HPC deployments

Features
• URL-based repositories (GitHub)
• OCI build caches (ghcr.io)
• CI/CD integration
• Reproducible HPC stacks

Dependencies:
Core: Boost, Eigen, PETSc,
SLEPc
Mesh: Gmsh, CGAL
GPU: Kokkos; Python: py-
bind11

Feel++ Christophe Prud’homme 8



Physics Toolboxes

Pre-configured Multi-Physics Applications:
• Fluid: Navier-Stokes CFD
• Heat: Thermal analysis
• Solid: Linear/nonlinear
mechanics

• FSI: Fluid-Structure Interaction
• Maxwell: Electromagnetics

• Heat-Fluid: Coupled
thermal-flow

• HDG: Hybridized DG methods
• Level-Set: Interface tracking
• Advection: Transport problems
• Coefficient-Form PDEs

Design Pattern: Standard BCs • Pre-configured discretizations • Solver
integration • ParaView export • JSON config

Feel++ Christophe Prud’homme 9



Python Ecosystem

PyFeelpp: Full Library Access

Complete Python bindings via pybind11 for rapid prototyping and
integration.

Components:
• pyfeelpp: Core library bindings
• pyfeelpp-mor: Model order
reduction

• pyfeelpp-toolboxes: Physics
applications

Use Cases:
• Rapid prototyping
• ML frameworks (PyTorch, TF)
• Jupyter notebooks
• Workflow automation

Current Work: Namespace package reorganization for better structure

Feel++ Christophe Prud’homme 10



Performance and Testing

Parallelization (Production)
• MPI via PETSc
• Domain decomposition
• Distributed mesh partitioning

GPU Portability (2025–2026)
• Kokkos backend integration
• CUDA/HIP targets
• Matrix-free operators

Testing Framework
• 800+ automated tests
• Unit + integration tests
• Regression testing

CI/CD: Ubuntu, Debian, Fedora •
Multiple compilers • Spack builds

Feel++ Christophe Prud’homme 11



Funded Projects (2025-2030)

SAGE-HPC (NumPEx, 2026)

AI-driven multi-fidelity orches-
tration for Bayesian optimiza-
tion. Feel++: ROM/MOR as surro-
gate.

ANR JNL-G (2026)

Digital twin for LNCMI high-
field magnets. Feel++:
ROM+UQ+ML+DA integration.

Impact on Feel++ Development:

• Clean, extensible MOR
architecture

• Runtime order for complex
geom

• ML methods with ROM
• Real-time surrogates
• Data assimilation

Feel++ Christophe Prud’homme 12



Roadmap and Priorities

2025 (Short-term)
• MOR refactoring (NLCRB,
GEIM, PBDW)

• Stabilize Kokkos GPU
backend

• Python bindings
reorganization

2026–2027 (Medium-term)
• SAGE-HPC: AI-driven ROM
• ANR JNL-G: LNCMI digital
twin

• ML-accelerated coefficients

2028–2030 (Long-term):
• Exascale-ready applications
• Production digital twins

What We Need
• Benchmark
problems/datasets

• Interface specifications
• Co-development partners

Feel++ Christophe Prud’homme 13



Community and Resources

Documentation:
• Website & Docs:
https:∕∕docs.feelpp.org

• API Reference: Doxygen

Development:
• GitHub: https:
∕∕github.com∕feelpp∕feelpp

• Issues and discussions
• Slack: feelpp.slack.com

Distribution:
• Docker / Apptainer images
• Debian/Ubuntu packages
• Spack packages
• Source builds

Feel++ Christophe Prud’homme 14

https://docs.feelpp.org
https://github.com/feelpp/feelpp
https://github.com/feelpp/feelpp


Summary

Feel++: Full Computational Pipeline for Exascale

Mono & multi-physics • Advanced methods • C++20/C++23 • Exa-MA
(WP1–WP6)

What We Offer
• Library + toolboxes + MOR +
Python

• Concepts, type safety,
GPU-ready

• MPI + Kokkos + matrix-free

Key Differentiators
• Runtime FE/geometry order
• C++20 concepts architecture
• Refactor MOR/ROM(in
progress)

Active: SAGE-HPC (2026) • ANR JNL-G (2026) • 800+ tests, CI/CD, Spack

Feel++ Christophe Prud’homme 15



Breakouts: Collaboration Outcomes (Today)

Goal

Convert needs into 2–3 co-owned integration items per breakout

Breakout Tracks
• WP1–WP2:
Geom/FE/Multiphysics↔
ROM/SciML

• WP3: Solver hooks +
benchmarks

• WP4–WP6: DA/UQ pipelines

Output per Item
1. Minimal deliverable
2. Acceptance criteria
3. Owner + co-owners
4. GitHub issue created live

Exa-MA App Ladder: mini-app→ extended→ demonstrator→ proxy-app
Contribution: benchmark→ spec→ implementation→ tests→ co-maint

Feel++ Christophe Prud’homme 16



Questions?

Feel++ Christophe Prud’homme 17


