EX
REPUBLIQUE

Feel++

Finite Element Embedded Library in C++
Modern Architecture for Exascale Com—
RaNcE\ DERECEe e puting
Version: 4c61980 (2025-12-10 14:52:27 +o1oo¥\
Christophe Prud’homme
January 20, 2026

Cemosis [IRMA - Université de Strasbourg — NumPEx

What is Feel++?

A Full Computational Pipeline

Modern C++ framework (C++20/C++23) for mono & multi-physics: ad-
vanced methods + toolboxes + MOR

Continuous Galerkin (CG)
Discontinuous Galerkin (DG)
Hybridized DG (HDG)

Low to high-order (incl.
geometry)

e Model order reduction

J

Capabilities

1D, 2D, 3D geometries

MPI parallelization

GPU portability (in progress)
Multi-physics coupling
Python bindings

Repository: https://github.com/feelpp/feelpp e 800+ tests o v0.111.0

Feel++

Christophe Prud’homme

https://github.com/feelpp/feelpp

Feel++ in the NumPEx/Exa-MA Context

WP3 - Solvers & Preconditioners

WP1 - Discretization & Geometry

e Low to high-order FE (incl. e PETSc/SLEPc integration
geom) e Block structure exposure

e Space/time adaptivity e Multi-physics coupling

e Multi-physics coupling)

WP4 (DA) & WP6 (UQ):

WP2 - Model Order Reduction GEIM/PBDW, EnKF, sensor

¢ Nonlinear Compressive RB placement, multi-query UQ
(NLCRB)

e ML-accelerated coefficients

e C++20 MOR architecture

@ @ breia— Feel++ Christophe Prud’homme

Architecture Overview

Applications & Toolboxes

—

N

Fluid Heat FSI Maxwell MOR
Feel++ Core Library
Mesh FE Algebra VF Models
~ L —1

\\A

S

Backends: PETSc, Kokkos, Python

Feel++

Christophe Prud’homme

3

Recent Developments: C++20 Refactoring

Modern C++ Architecture (C++20 features, C++23 ready)

Major refactoring efforts leveraging C++20 features:

Runtime Order Selection: MOR/ROM Refactoring:
e FE and geometry order at e Explicit offlinef/online API
runtime e Concepts-based contracts
e C++20 concepts for type safety e Pluggable hyper-reduction
e No code duplication e NLCRB (WP2), DA (WP4)

* Enables adaptive methods GPU Portability (2025-2026):

Tensor Rank System: o Kokkos integration
e Compile-time classification e CUDA/HIP backends
e Scalar/Vector/Matrix/Tensor3

@ @ &Z/ZL,GI- Feel++ Christophe Prud’homme 4

C++20 Refactoring: Runtime Order Selection

Key Innovation

C++20 enables runtime-selectable FE and geometry order without code
duplication or performance loss

After (runtime)

e Order fixed at compile time e Order selected at runtime

e Code bloat for each order ¢ Single code path

e Hard to do hp-adaptivity e Enables hp-adaptivity, MOR
Applications: Adaptive methods ¢ MOR basis construction e Multi-fidelity
workflows

@ @ breia— Feel++ Christophe Prud’homme

C++20 Concepts: Why It Matters

Core Insight

C++20 concepts replace implicit conventions with explicit, compiler-
enforced contracts: safer APIs, better errors, no virtual dispatch — GPU-

ready design

Before (C++14/17)

e Implicit template e Explicit concept definitions

requirements e Clear, actionable errors
e Cryptic error messages e Static polymorphism
e SFINAE-based dispatch (GPU-ready)

Key feature: Runtime-selectable polynomial order without code
duplication—critical for adaptive methods and MOR

&ZW Feel++ Christophe Prud’homme

6

MOR/ROM Architecture Refactoring

Support NLCRB (WP2), GEIM/PBDW (WP4), and multi-query UQ (WP6)
with clean architecture

Design Principles First-Class Objects

e Explicit offline/online e ParameterSpace
separation e Model, BasisBuilder

e Concepts over conventions e OnlineSolver

e Pluggable hyper-reduction

Benefit: Predictable data-flow, cacheable operators, compile-time validation

@ @ breia— Feel++ Christophe Prud’homme

Spack Integration for NumPEx

Modern Package Management

Feel++ is integrated into the NumPEx Spack ecosystem for reproducible
HPC deployments

Dependencies:
* URL-based repositories (GitHub) Core: Boost, Eigen, PETSc,
e OCI build caches (ghcr.io) SLEPc
e CI/CD integration Mesh: Gmsh. CGAL
e Reproducible HPC stacks GPU: Kokkos; Python: py-
bind11

@ @ breia— Feel++ Christophe Prud’homme

Physics Toolboxes

Pre-configured Multi-Physics Applications:
e Fluid: Navier-Stokes CFD

Heat-Fluid: Coupled

e Heat: Thermal analysis thermal-flow

e Solid: Linear/nonlinear e HDG: Hybridized DG methods
mechanics e Level-Set: Interface tracking

e FSI: Fluid-Structure Interaction e Advection: Transport problems

e Maxwell: Electromagnetics e Coefficient-Form PDEs

Design Pattern: Standard BCs e Pre-configured discretizations e Solver
integration e ParaView export ¢ JSON config

@ @ leeia—~ Feel++ Christophe Prud’homme 9

Python Ecosystem

PyFeelpp: Full Library Access

Complete Python bindings via pybind11 for rapid prototyping and

integration.
Components: Use Cases:
e pyfeelpp: Core library bindings e Rapid prototyping
e pyfeelpp-mor: Model order e ML frameworks (PyTorch, TF)
reduction e Jupyter notebooks
e pyfeelpp-toolboxes: Physics e Workflow automation

applications
Current Work: Namespace package reorganization for better structure

@ @ &Z/ZL,GI- Feel++ Christophe Prud’homme

10

Performance and Testing

Parallelization (Production) Testing Framework

e MPI via PETSc e 800+ automated tests
e Domain decomposition e Unit + integration tests

L Distributed mesh partitioning) e Regression testing

CI/CD: Ubuntu, Debian, Fedora e
e Kokkos backend integration Multiple compilers e Spack builds
e CUDA/HIP targets
e Matrix-free operators

.

@ @ leeia—~ Feel++ Christophe Prud’homme 11

Funded Projects (2025-2030)

SAGE-HPC (NumPEXx, 2026)

Al-driven multi-fidelity orches-

tration for Bayesian optimiza-
tion. Feel++: ROM/MOR as surro-
gate.

ANR JNL-G (2026)
Digital twin for LNCMI high-

field magnets. Feel++:
ROM+UQ+ML+DA integration.

Impact on Feel++ Development:

e Clean, extensible MOR
architecture

e Runtime order for complex
geom

e ML methods with ROM

e Real-time surrogates

e Data assimilation

Feel++ Christophe Prud’homme

12

Roadmap and Priorities

2025 (Short-term)

e MOR refactoring (NLCRB,
GEIM, PBDW)

e Stabilize Kokkos GPU
backend

e Python bindings
reorganization

|\

Bo

2026-2027 (Medium-term)
e SAGE-HPC: Al-driven ROM
¢ ANR JNL-G: LNCMI digital
twin
e ML-accelerated coefficients

lrzia—

Feel++

2028-2030 (Long-term):
e Exascale-ready applications
e Production digital twins

What We Need

e Benchmark
problems/datasets

¢ Interface specifications

e Co-development partners

Christophe Prud’homme

13

Community and Resources

Documentation:

e \Website & Docs:

https://docs.feelpp.org
e API Reference: Doxygen

Distribution:

e Docker [Apptainer images
e Debian/Ubuntu packages
e Spack packages
. e Source builds
Development:

e GitHub: https:

//github.com/feelpp/feelpp
e Issues and discussions
e Slack: feelpp.slack.com

@ @ &’zu’a,—- Feel++

Christophe Prud’homme

14

https://docs.feelpp.org
https://github.com/feelpp/feelpp
https://github.com/feelpp/feelpp

Summary

Feel++: Full Computational Pipeline for Exascale

Mono & multi-physics e Advanced methods e C++20/C++23 e Exa-MA
(WP1-WP6)

What We Offer Key Differentiators
Library + toolboxes + MOR + e Runtime FE/geometry order
Python e C++20 concepts architecture
Concepts, type safety, o Refactor MOR/ROM(in

GPU-ready progress)
e MP| + Kokkos + matrix-free

Active: SAGE-HPC (2026) ¢ ANR JNL-G (2026) e 800+ tests, CI/CD, Spack

@ @ leeia—~ Feel++ Christophe Prud’homme 15

Breakouts: Collaboration Outcomes (Today)

Convert needs into 2-3 co-owned integration items per breakout

Breakout Tracks Output per Item

e WP1-WP2: 1. Minimal deliverable
Geom/FE/Multiphysics « 2. Acceptance criteria
ROM/SciML 3. Owner + co-owners

e WP3: Solver hooks + 4. GitHub issue created live
benchmarks

|- WP4-WP6: DA/UQ pipelines

Exa-MA App Ladder: mini-app — extended — demonstrator — proxy-app

Contribution: benchmark — spec — implementation — tests — co-maint

@ @ leeia—~ Feel++ Christophe Prud’homme 16

Questions?

@ @ leeia—~ Feel++ Christophe Prud’homme 17

