

SCIMBA: SCIentific Machine learning liBrAry

E. Franck

AG Exama, PEPR NUMPEX

01/2026

1. Scimba

- **Scimba** is an OpenSource library integrating learning algorithms to solve PDE-type problems.
- **Two axes:**
 - Numerical methods and construction of reduced models based on neural networks.
 - Hybrid methods combining classical methods and learning.

Objectives: Propose approaches that are both accurate and faster than classical methods for solving high-dimensional PDEs and parametric PDEs.

Remark: Scimba development is primarily conducted within the framework of projects: Exama (PEPR Numpex), PDE-IA (PEPR IA) and the “scimba d’été” ADT (INRIA).

Who? Where? How?

- **Main developers:** E. Franck, V. Michel-Dansac and R. Imbach (Inria MACARON), M. Boileau (CNRS). More to come, we hope.
- **Other developers:**
 - N. Paillez (PhD Unistra PDE-IA), F. Lecourtier (PhD Inria MIMESIS), C. Schnoebelen (PhD Unistra), A. Belières (PhD Unistra Numpex), V. Italiano (PhD Unistra Numpex-Enact).
- **Users/collaborators:**
 - **Plasma:** V. Grandgirard (CEA), M. Campos Pinto and V. Fournet (IPP Garching), S. Pamela (UKAEA).
 - **Astrophysics:** P. Ocvrik (Obs Strasbourg)
 - **Waves and DD:** D. Hrebenshchikova and S. Lanteri (INRIA Atlantis), H. Barucq and F. Faucher (INRIA Makutu), V. Dolean (TU Eindhoven), A. Heinlein (TU Delft).
 - **Coupling:** C. Prud'homme (Unistra) and J. Aghili (Unistra).

Remark (Information):

- **Main version:** Pytorch + Pytest + Doc Sphinx
- **Jax version under development** (several algorithms already available).

1.1. So far

Nonlinear approximation spaces

Remark: Most numerical methods use linear approximation spaces. The first objective of **Scimba** is to propose **nonlinear spaces**.

- Approximation space

$$u_{\theta}(x) = \sum_{i=1}^N \alpha_i \varphi(x, \beta_i)$$

with $\theta = (\alpha, \beta)$.

- Projection by collocation

$$\theta^* = \arg \min_{\theta} \int_{\Omega} |u_{\theta}(x) - u(x)|^2 dx \approx \sum_{j=1}^M |u_{\theta}(x_j) - u(x_j)|^2$$

- In practice:

- linear case (β fixed): least squares and matrix inversion
- nonlinear case (β variable): nonlinear optimization (gradient descent, Adam, ...)
- hybrid case: alternating between the two.

Example (possible spaces): Neural networks, kernel methods (with learnable kernels), nonlinear spectral methods

PINNs and collocation method II

- How we solve the PDE: $\mathcal{R}(u) = f(x)$

Definition (Residual projection): We solve

$$\theta^* = \arg \min_{\theta} \int_{\Omega} |\mathcal{R}(u_{\theta}(x)) - f(x)|^2 dx \approx \sum_{j=1}^M |\mathcal{R}(u_{\theta}(x_j)) - f(x_j)|^2$$

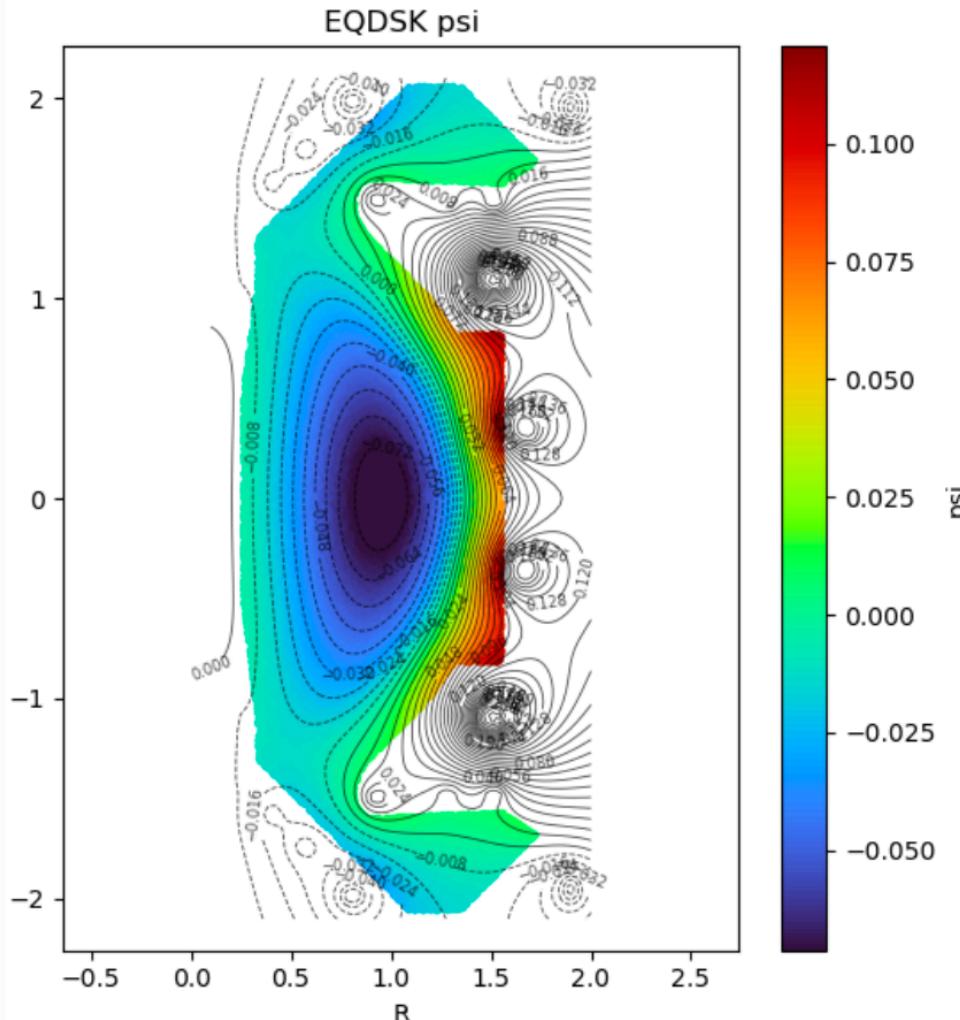
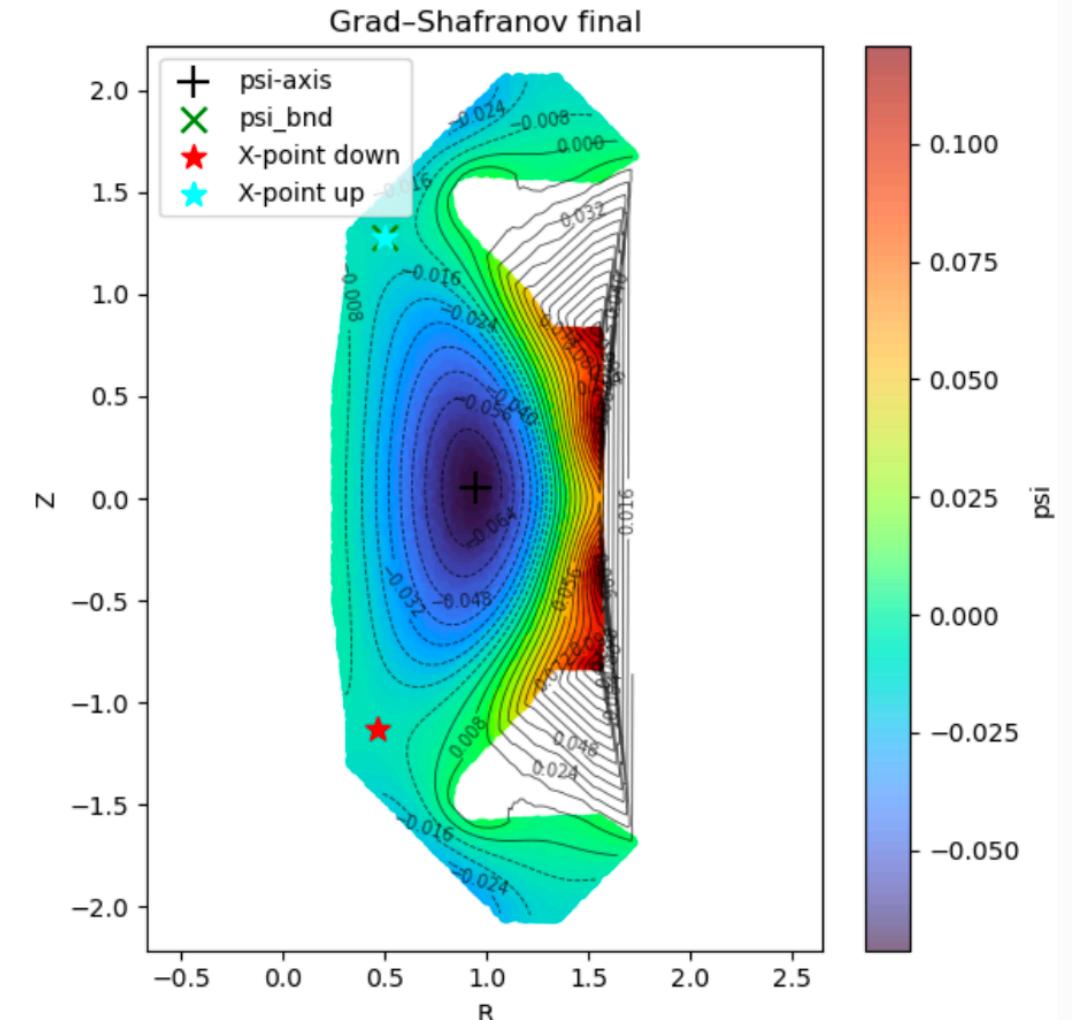
- If the space is linear, we fall back to classical collocation methods.
- If the space is nonlinear, we obtain **PINNs** type methods.

Remark: The code allows solving **parametric** problems in the domain $\Omega \times V$. Domains are sampled by **level set function or mapping**.

Result: To obtain good accuracy, we use quasi-Newton type optimizers. In Scimba: **Natural gradient** (requires linear algebra). SsBroyden also seems very good.

Examples

- Fixed boundary Grad Shafranov equilibrium for tokamak:

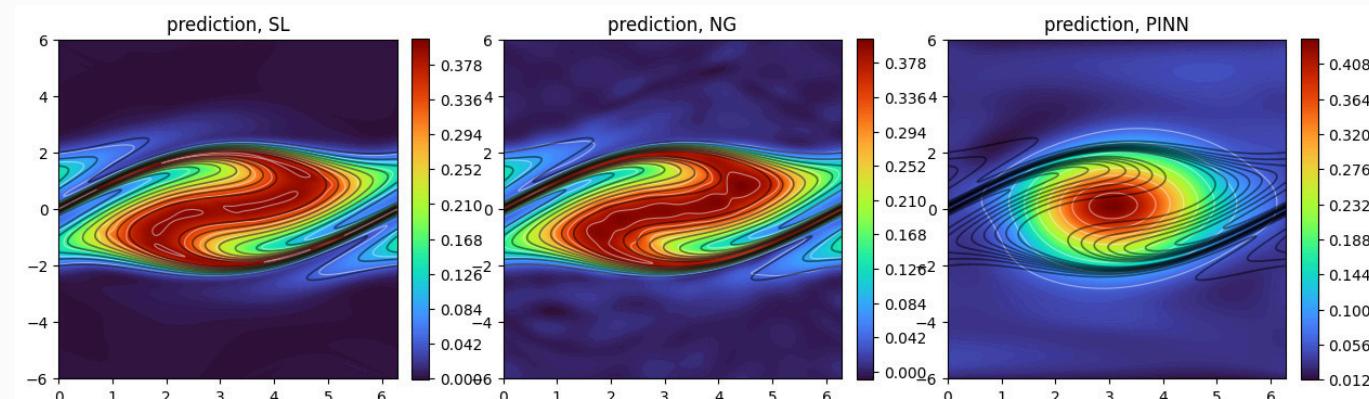


Sequential time methods

- PINNs for time-dependent problems: one optimization. Equivalent to “space-time” approximations.
- Sequential methods:
 - we approximate the solution at each time step t_n by a linear (classical) or nonlinear space.
 - we solve optimizations at each time step.

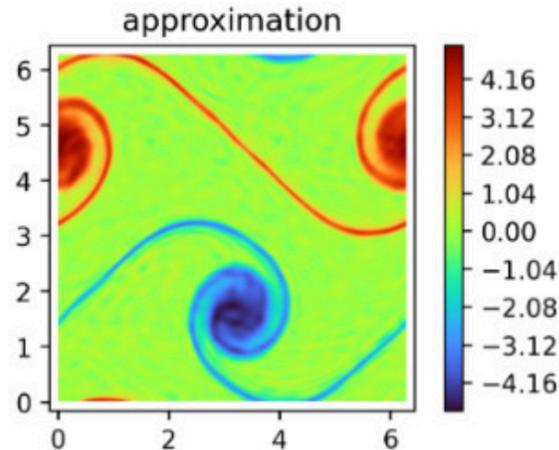
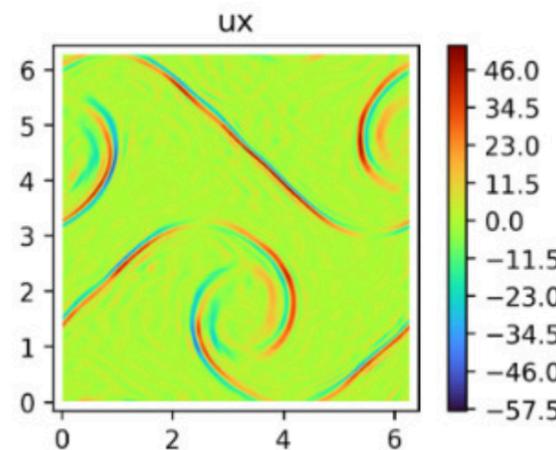
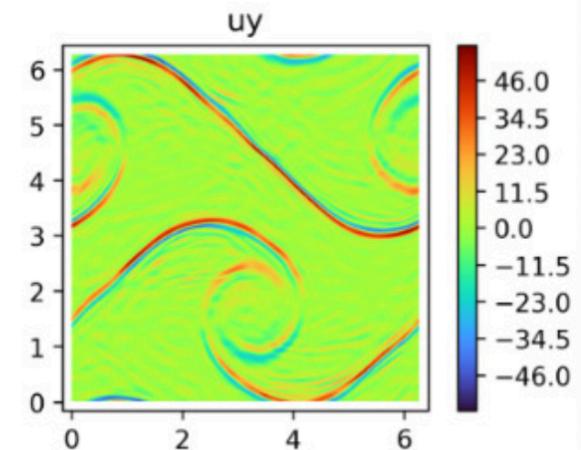
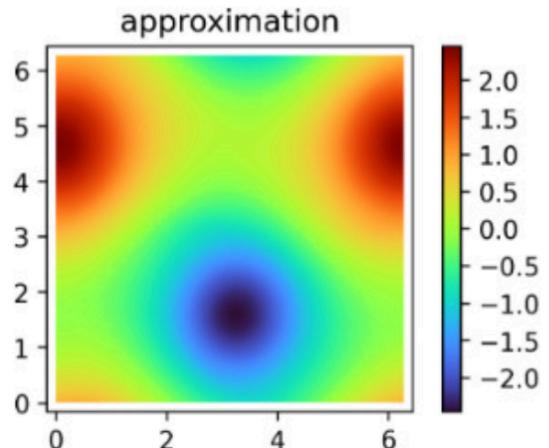
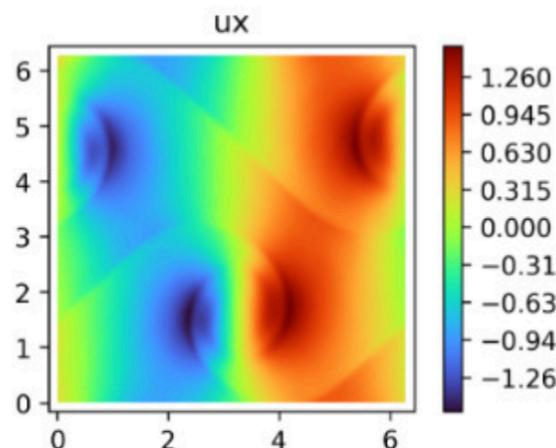
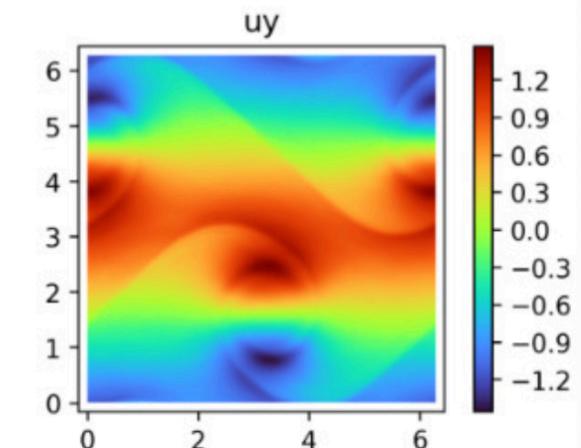
Remark: We can easily generalize implicit, explicit, splitting or semi-Lagrangian schemes to nonlinear spaces.

- Many more optimizations but shorter because:
 - we start from a good initialization (solution at the previous time step)
 - we can use smaller spaces (because we approximate over a short time step).



Examples

- Incompressible Euler:



Flow learning/model learning

- Let a parametric ODE:

$$\begin{cases} \frac{d}{dt}u(t, \theta) = \mathcal{F}(u(t, \theta), \theta) \\ u(0, \theta) = u_0(\theta) \end{cases}$$

Definition (Flow): The flow $\Phi_{t, \theta}$ is defined by $u(t, \theta) = \Phi_{t, \theta}(u_0(\theta))$. It is the resolvent of the system.

- In Scimba we can learn a nonlinear approximation of a parametric flow:
 - discrete or continuous flow in time.
 - classical or **symplectic** flow (associated with Hamiltonian systems).
 - optimization over complete trajectories (to be validated).

Remark (Application): These flow learning can be used to learn latent variable dynamics in order reduction.

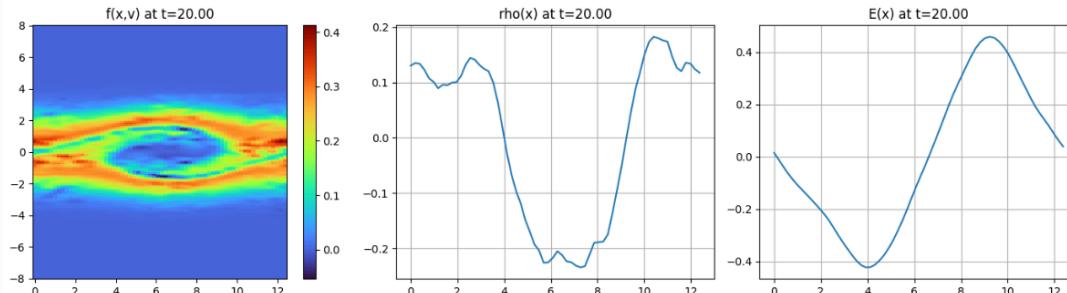
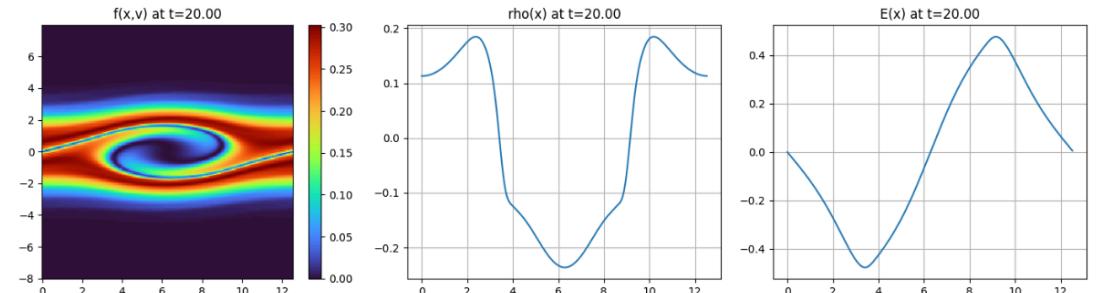
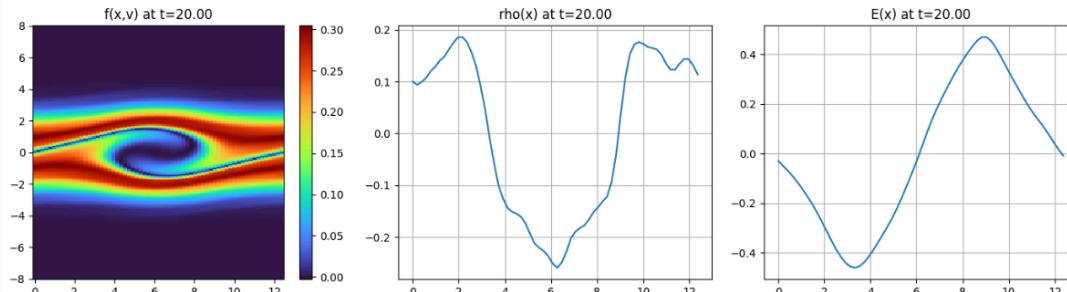
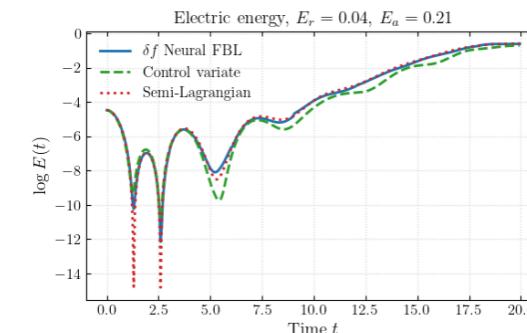
Examples

- Classique δ -PIC

$$f(t, x, v) = f^{\text{init}}(x, v) + \sum_{k=1}^N w_k \delta(\mathbf{x} - \mathbf{X}_k(t)) \delta(\mathbf{v} - \mathbf{V}_k(t))$$

- Hybrid PIC: add a NN approximation

$$f(t, x, v) = f^{\text{init}}\left(\left(\varphi_{\theta_n} \circ \dots \circ \varphi_{\theta_1}\right)(x, v)\right) + \sum_{k=1}^N w_k \delta(\mathbf{x} - \mathbf{X}_k(t)) \delta(\mathbf{v} - \mathbf{V}_k(t))$$



Example code

- `link("https://www.scimba.org")`

1.2. Future

Ongoing work in torch version

Remark (Adaptive sampling in Torch): Learning can be difficult if the PDE has very localized phenomena (shocks, interfaces, ...). To avoid too many collocation points, we can use adaptive sampling strategies.

- In practice, we use a generative model to dynamically learn $p_{\theta}(x) \sim | \partial_x^p R(u_{\theta}) |^2$ (or other)
- Models:
 - flow matching
 - normalizing flow
 - optimal transport

Ongoing and futur works in Jax

- Neural operators works:
 - Neural operators (Fourier, transformer, Green's function) accurate and general in mesh and geometry.
 - Structure-preserving neural operators (symplectic, dissipative) + PDE flow learning
 - Rom based on Invertible networks + POD

Example: Accurate NO for Helmholtz in heterogeneous medium + generative NO for the inverse problem (with V. Italiano Numpex)

Objectives (Current development in Jax):

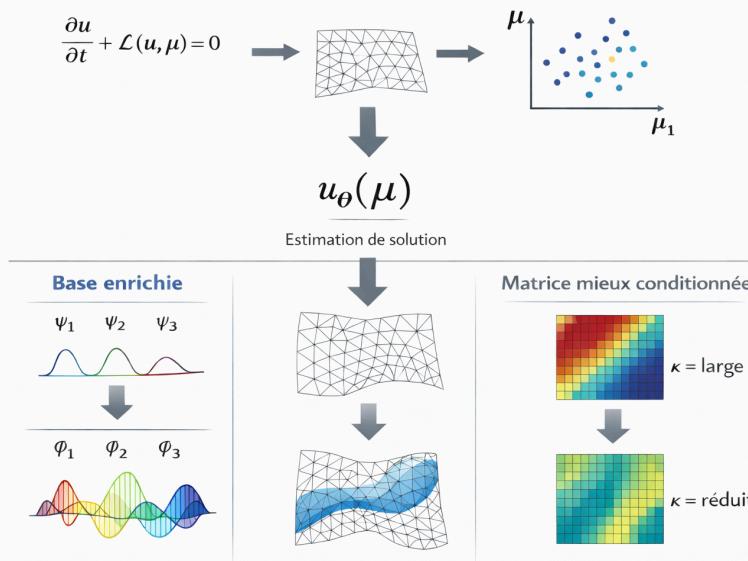
- Neural operator
- Adding optimizers
- Adding features: multi-subdomain, multiple BC, DD etc
- Domain decomposition: One PINNs per subdomain with overlaps (FBPINNs methods). Partitioning with GMSH
- Matrix-free + block preconditionning Natural gradient for FBPINNs. Extension to other optimizers
- Efficient linear algebra? Coupling with C++?

Hybrid DG

Remark: uses significantly fewer degrees of freedom than a conventional code starting from dimension 3.

- fewer calculations? only in larger dimensions
- less memory ==> in an HPC context, less communication

Remark: The lack of guarantees of these methods is a limitation. Weak control on the error and **stability**.



Objectives: hybrid approaches and restore convergence guarantees. Focus on coupling with multi-patch DG methods.

- **Idea 1:** The network roughly captures a set of solutions (parametric PINNs, NO. We enrich the DG space (basis, mesh, PC) with the prediction.
- **Idea 2:** DG between macro cells with PINNs.
- **Idea 3:** Invertible change of coordinates/variables which simplifie the solution for the DG space