
SCIMBA: SCIentific Machine learning liBrAry

E. Franck

AG Exama, PEPR NUMPEX

01/2026

1. Scimba

Scimba

Scimba

• Scimba is an OpenSource library integrating learning algorithms to solve PDE-type problems.

• Two axes:

‣ Numerical methods and construction of reduced models based on neural networks.

‣ Hybrid methods combining classical methods and learning.

Objectives : Propose approaches that are both accurate and faster than classical methods for solving high-

dimensional PDEs and parametric PDEs.

Remark : Scimba development is primarily conducted within the framework of projects: Exama (PEPR

Numpex), PDE-IA (PEPR IA) and the “scimba d’été” ADT (INRIA).

0/12

Scimba

 Who? Where? How?

• Main developers: E. Franck, V. Michel-Dansac and R. Imbach (Inria MACARON), M. Boileau (CNRS). More to

come, we hope.

• Other developers:

‣ N. Paillez (PhD Unistra PDE-IA), F. Lecourtier (PhD Inria MIMESIS), C. Schnoebelen (PhD Unistra), A. Belières

(PhD Unistra Numpex), V. Italiano (PhD Unistra Numpex-Enact).

• Users/collaborators:

‣ Plasma: V. Grandgirard (CEA), M. Campos Pinto and V. Fournet (IPP Garching), S. Pamela (UKAEA).

‣ Astrophysics: P. Ocvrik (Obs Strasbourg)

‣ Waves and DD: D. Hrebenshchykova and S. Lanteri (INRIA Atlantis), H. Barucq and F. Faucher (INRIA

Makutu), V. Dolean (TU Eindhoven), A. Heinlein (TU Delft).

‣ Coupling: C. Prud’homme (Unistra) and J. Aghili (Unistra).

Remark (Information) :

• Main version: Pytorch + Pytest + Doc Sphinx

• Jax version under development (several algorithms already available).

1/12

1.1. So far

So far

 Nonlinear approximation spaces

Remark : Most numerical methods use linear approximation spaces. The first objective of Scimba is to propose

nonlinear spaces.

• Approximation space

u𝛉(𝐱) = ∑
N

i=1
αiφ(𝐱, 𝛃i)

with 𝛉 = (𝛂, 𝛃).
• Projection by collocation

𝛉∗ = arg min
𝛉

∫
Ω
|u𝛉(𝐱) − u(𝐱) |2 d𝐱 ≈ ∑

M

j=1
|u𝛉(𝐱j) − u(𝐱j) |2

• In practice:

‣ linear case (𝛃 fixed): least squares and matrix inversion

‣ nonlinear case (𝛃 variable): nonlinear optimization (gradient descent, Adam, …)

‣ hybrid case: alternating between the two.

Example (possible spaces) : Neural networks, kernel methods (with learnable kernels), nonlinear spectral

methods)

2/12

So far

 PINNs and collocation method II

• How we solve the PDE: ℛ︀(u) = f(𝐱)

Definition (Residual projection) : We solve

𝛉∗ = arg min
𝛉

∫
Ω
|ℛ︀(u𝛉(𝐱)) − f(𝐱) |2 d𝐱 ≈ ∑

M

j=1
|ℛ︀(u𝛉(𝐱j)) − f(𝐱j) |2

• If the space is linear, we fall back to classical collocation methods.

• If the space is nonlinear, we obtain PINNs type methods.

Remark : The code allows solving parametric problems in the domain Ω × V. Domains are sampled by level

set function or mapping.

Result : To obtain good accuracy, we use quasi-Newton type optimizers. In Scimba: Natural gradient

(requires linear algebra). SsBroyden also seems very good.
3/12

So far

 Examples

• Fixed boundary Grad Shafranov equilibrium for tokamak:

4/12

So far

Sequential time methods

• PINNs for time-dependent problems: one optimization. Equivalent to “space-time” approximations.

• Sequential methods:

‣ we approximate the solution at each time step tn by a linear (classical) or nonlinear space.

‣ we solve optimizations at each time step.

Remark : We can easily generalize implicit, explicit, splitting or semi-Lagrangian schemes to nonlinear spaces.

• Many more optimizations but shorter because:

‣ we start from a good initialization (solution at the previous time step)

‣ we can use smaller spaces (because we approximate over a short time step).

5/12

So far

 Examples

• Incompressible Euler:

6/12

So far

Flow learning/model learning

• Let a parametric ODE:

{
d
dtu(t, 𝛉) = ℱ︀(u(t, 𝛉), 𝛉)
u(0, 𝛉) = u0(𝛉)

Definition (Flow): The flow Φt,𝛉 is defined by u(t, 𝛉) = Φt,𝛉(u0(𝛉)). It is the resolvent of the system.

• In Scimba we can learn a nonlinear approximation of a parametric flow:

‣ discrete or continuous flow in time.

‣ classical or symplectic flow (associated with Hamiltonian systems).

‣ optimization over complete trajectories (to be validated).

Remark (Application) : These flow learning can be used to learn latent variable dynamics in order reduction.

7/12

So far

 Examples

• Classique δ-PIC

f(t, x, v) = f init(x, v) + ∑
N

k=1
wkδ(𝐱 − 𝐗k(t))δ(𝐯 − 𝐕k(t))

• Hybrid PIC: add a NN approximation

f(t, x, v) = f init((φ𝛉n
∘ … ∘ φ𝛉1

)(x, v)) + ∑
N

k=1
wkδ(𝐱 − 𝐗k(t))δ(𝐯 − 𝐕k(t))

8/12

So far

 Example code

• link(“https://www.scimba.org”)

9/12

https://www.scimba.org

1.2. Future

Future

Ongoing work in torch version

Remark (Adaptive sampling in Torch) : Learning can be difficult if the PDE has very localized phenomena

(shocks, interfaces, …). To avoid too many collocation points, we can use adaptive sampling strategies.

• In practice, we use a generative model to dynamically learn p𝛉(𝐱) ∼ | ∂p
𝐱R(𝐮𝛉) |2 (or other)

• Models:

‣ flow matching

‣ normalizing flow

‣ optimal transport

10/12

Future

Ongoing and futur works in Jax

• Neural operators works:

‣ Neural operators (Fourier, transformer, Green’s function) accurate and general in mesh and geometry.

‣ Structure-preserving neural operators (symplectic, dissipative) + PDE flow learning

‣ Rom based on Invertible networks + POD

Example : Accurate NO for Helmholtz in heterogeneous medium + generative NO for the inverse problem

(with V. Italiano Numpex)

Objectives (Current development in Jax) :

• Neural operator

• Adding optimizers

• Adding features: multi-subdomain, multiple BC, DD etc

• Domain decomposition: One PINNs per subdomain with overlaps (FBPINNs methods). Partitioning with

GMSH

• Matrix-free + block preconditionning Natural gradient for FBPINNs. Extension to other optimizers

• Efficient linear algebra? Coupling with C++?

11/12

Future

Hybrid DG

Remark : uses significantly fewer degrees of freedom than a conventional code starting from dimension 3.

• fewer calculations? only in larger dimensions

• less memory ==> in an HPC context, less communication

Remark : The lack of guarantees of these methods is a limitation. Weak control on the error and stability.

Objectives : hybrid approaches and restore convergence

guarantees. Focus on coupling with multi-patch DG methods.

• Idea 1: The network roughly captures a set of solutions

(parametric PINNs, NO. We enrich the DG space (basis, mesh,

PC) with the prediction.

• Idea 2: DG between macro cells with PINNs.

• Idea 3: Invertible change of coordinates/variables which

simplifie the solution for the DG space

12/12

	1. Scimba
	1.1. So far
	1.2. Future

