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Scimba

Scimba

« Scimba is an OpenSource library integrating learning algorithms to solve PDE-type problems.
- Two axes:

» Numerical methods and construction of reduced models based on neural networks.
» Hybrid methods combining classical methods and learning.

Objectives: Propose approaches that are both accurate and faster than classical methods for solving high-
dimensional PDEs and parametric PDEs.

Remark: Scimba development is primarily conducted within the framework of projects: Exama (PEPR
Numpex), PDE-IA (PEPR IA) and the “scimba d’été” ADT (INRIA).
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Scimba

Who? Where? How?

« Main developers: E. Franck, V. Michel-Dansac and R. Imbach (Inria MACARON), M. Boileau (CNRS). More to
come, we hope.

« Other developers:
» N. Paillez (PhD Unistra PDE-IA), F. Lecourtier (PhD Inria MIMESIS), C. Schnoebelen (PhD Unistra), A. Beliéeres
(PhD Unistra Numpex), V. Italiano (PhD Unistra Numpex-Enact).
« Users/collaborators:
» Plasma: V. Grandgirard (CEA), M. Campos Pinto and V. Fournet (IPP Garching), S. Pamela (UKAEA).
» Astrophysics: P. Ocvrik (Obs Strasbourg)
» Waves and DD: D. Hrebenshchykova and S. Lanteri (INRIA Atlantis ), H. Barucq and F. Faucher (INRIA
Makutu), V. Dolean (TU Eindhoven), A. Heinlein (TU Delft).
» Coupling: C. Prud’homme (Unistra) and J. Aghili (Unistra).

Remark (Information):
« Main version: Pytorch + Pytest + Doc Sphinx
 Jax version under development (several algorithms already available).
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So far

Nonlinear approximation spaces

Remark: Most numerical methods use linear approximation spaces. The first objective of Scimba is to propose
nonlinear spaces.

« Approximation space

ug(x) = o;p(x, B;)

gl

with 0 = (o, B).
« Projection by collocation

M
0" = argmem/ [ug(x) —u(x) [> dx ~ ) |ug(x;) —u(x;) |
Q j=1

- In practice:
» linear case (3 fixed): least squares and matrix inversion

» nonlinear case (3 variable): nonlinear optimization (gradient descent, Adam, ...)
» hybrid case: alternating between the two.

Example (possible spaces): Neural networks, kernel methods (with learnable kernels), nonlinear spectral
methods)
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So far

PINNSs and collocation method II

« How we solve the PDE: R(u) = f(x)

Definition (Residual projection): We solve

0* = argmein/ [ R(ug(x)) — f(x) |* dx ~ Z|j€(ue(xj>) - f<Xj> 2
Q j=1

J

« If the space is linear, we fall back to classical collocation methods.
o If the space is nonlinear, we obtain PINNs type methods.

Remark: The code allows solving parametric problems in the domain €2 X V. Domains are sampled by level
set function or mapping,.

Result: To obtain good accuracy, we use quasi-Newton type optimizers. In Scimba: Natural gradient

(requires linear algebra). SsBroyden also seems very good.
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So far

Examples
« Fixed boundary Grad Shafranov equilibrium for tokamak:
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So far

Sequential time methods

« PINNSs for time-dependent problems: one optimization. Equivalent to “space-time” approximations.
« Sequential methods:

» we approximate the solution at each time step t,, by a linear (classical) or nonlinear space.

» we solve optimizations at each time step.

Remark: We can easily generalize implicit, explicit, splitting or semi-Lagrangian schemes to nonlinear spaces.

- Many more optimizations but shorter because:
» we start from a good initialization (solution at the previous time step)
» we can use smaller spaces (because we approximate over a short time step).
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So far

Examples

« Incompressible Euler:
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So far
Flow learning/model learning

« Let a parametric ODE:

du(t,0) = F(ut,0),0)
u(0,8) = uy(0)

Definition (Flow): The flow &, g is defined by u(t, 0) = ®; ¢(uy(0)). It is the resolvent of the system.

 In Scimba we can learn a nonlinear approximation of a parametric flow:
» discrete or continuous flow in time.

» classical or symplectic flow (associated with Hamiltonian systems).
» optimization over complete trajectories (to be validated).

Remark (Application): These flow learning can be used to learn latent variable dynamics in order reduction.

7/12



So far

Examples

« Classique §-PIC

£(t,%,v) = 28 (x,v) + Y wid(x — Xy (£))3 (v — Vi (b))

« Hybrid PIC: add a NN approximation

f(t,x,v) = finit((@en ©...0 @91)(X7V)) + Zwké(x — X (£))0(v — V()
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So far

Example code

« link(“https://www.scimba.org”)
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Future

Ongoing work in torch version

Remark (Adaptive sampling in Torch): Learning can be difficult if the PDE has very localized phenomena
(shocks, interfaces, ...). To avoid too many collocation points, we can use adaptive sampling strategies.

« In practice, we use a generative model to dynamically learn pg(x) ~ | 92R(ug) |? (or other)
» Models:

» flow matching
» normalizing flow
» optimal transport

10/12



Future

Ongoing and futur works in Jax

 Neural operators works:

» Neural operators (Fourier, transformer, Green’s function) accurate and general in mesh and geometry.
» Structure-preserving neural operators (symplectic, dissipative) + PDE flow learning
» Rom based on Invertible networks + POD

Example: Accurate NO for Helmholtz in heterogeneous medium + generative NO for the inverse problem
(with V. Italiano Numpex)

Objectives (Current development in Jax):

Neural operator

Adding optimizers

Adding features: multi-subdomain, multiple BC, DD etc

Domain decomposition: One PINNs per subdomain with overlaps (FBPINNs methods). Partitioning with
GMSH

Matrix-free + block preconditionning Natural gradient for FBPINNs. Extension to other optimizers
Efficient linear algebra? Coupling with C++7?
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Future

Hybrid DG

Remark: uses significantly fewer degrees of freedom than a conventional code starting from dimension 3.
- fewer calculations? only in larger dimensions

o less memory ==> in an HPC context, less communication

Remark: The lack of guarantees of these methods is a limitation. Weak control on the error and stability.

Objectives: hybrid approaches and restore convergence
guarantees. Focus on coupling with multi-patch DG methods.

 Idea 1: The network roughly captures a set of solutions
(parametric PINNs, NO. We enrich the DG space (basis, mesh,

Base enrichie ‘ Matrice mieux conditionnée

AQA PC) with the prediction.
. ¥ e Idea 2: DG between macro cells with PINNS.

« Idea 3: Invertible change of coordinates/variables which
simplifie the solution for the DG space
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