SCIMBA: SClentific Machine learning liBrAry

E. Franck

AG Exama, PEPR NUMPEX

01/2026

Scimba

Scimba

« Scimba is an OpenSource library integrating learning algorithms to solve PDE-type problems.
- Two axes:

» Numerical methods and construction of reduced models based on neural networks.
» Hybrid methods combining classical methods and learning.

Objectives: Propose approaches that are both accurate and faster than classical methods for solving high-
dimensional PDEs and parametric PDEs.

Remark: Scimba development is primarily conducted within the framework of projects: Exama (PEPR
Numpex), PDE-IA (PEPR IA) and the “scimba d’été” ADT (INRIA).

0/12

Scimba

Who? Where? How?

« Main developers: E. Franck, V. Michel-Dansac and R. Imbach (Inria MACARON), M. Boileau (CNRS). More to
come, we hope.

« Other developers:
» N. Paillez (PhD Unistra PDE-IA), F. Lecourtier (PhD Inria MIMESIS), C. Schnoebelen (PhD Unistra), A. Beliéeres
(PhD Unistra Numpex), V. Italiano (PhD Unistra Numpex-Enact).
« Users/collaborators:
» Plasma: V. Grandgirard (CEA), M. Campos Pinto and V. Fournet (IPP Garching), S. Pamela (UKAEA).
» Astrophysics: P. Ocvrik (Obs Strasbourg)
» Waves and DD: D. Hrebenshchykova and S. Lanteri (INRIA Atlantis), H. Barucq and F. Faucher (INRIA
Makutu), V. Dolean (TU Eindhoven), A. Heinlein (TU Delft).
» Coupling: C. Prud’homme (Unistra) and J. Aghili (Unistra).

Remark (Information):
« Main version: Pytorch + Pytest + Doc Sphinx
 Jax version under development (several algorithms already available).

1/12

So far

Nonlinear approximation spaces

Remark: Most numerical methods use linear approximation spaces. The first objective of Scimba is to propose
nonlinear spaces.

« Approximation space

ug(x) = o;p(x, B;)

gl

with 0 = (o, B).
« Projection by collocation

M
0" = argmem/ [ug(x) —u(x) [> dx ~) |ug(x;) —u(x;) |
Q j=1

- In practice:
» linear case (3 fixed): least squares and matrix inversion

» nonlinear case (3 variable): nonlinear optimization (gradient descent, Adam, ...)
» hybrid case: alternating between the two.

Example (possible spaces): Neural networks, kernel methods (with learnable kernels), nonlinear spectral
methods)

2

So far

PINNSs and collocation method II

« How we solve the PDE: R(u) = f(x)

Definition (Residual projection): We solve

0* = argmein/ [R(ug(x)) — f(x) |* dx ~ Z|j€(ue(xj>) - f<Xj> 2
Q j=1

J

« If the space is linear, we fall back to classical collocation methods.
o If the space is nonlinear, we obtain PINNs type methods.

Remark: The code allows solving parametric problems in the domain €2 X V. Domains are sampled by level
set function or mapping,.

Result: To obtain good accuracy, we use quasi-Newton type optimizers. In Scimba: Natural gradient

(requires linear algebra). SsBroyden also seems very good.
3/12

So far

Examples
« Fixed boundary Grad Shafranov equilibrium for tokamak:
EQDSK psi Grad-Shafranov final
5 204 + psi-axis
> psi_bnd
0.100 % X-point down 0.100
1549 <& X-pointup
0.075 L 0.075
1 - 1.0 4
0.050 o5 | L 0.050
0- 0.025 g N 0.0- F0.025 g
0.000 =057 L 0.000
-1 - =1.0 A
-0.025 -0.025
~1.5 -
~0.050 ~0.050
=2 7 -2.0 1
05 00 05 10 15 20 25 05 00 05 10 15 20 25
R R

4/12

So far

Sequential time methods

« PINNSs for time-dependent problems: one optimization. Equivalent to “space-time” approximations.
« Sequential methods:

» we approximate the solution at each time step t,, by a linear (classical) or nonlinear space.

» we solve optimizations at each time step.

Remark: We can easily generalize implicit, explicit, splitting or semi-Lagrangian schemes to nonlinear spaces.

- Many more optimizations but shorter because:
» we start from a good initialization (solution at the previous time step)
» we can use smaller spaces (because we approximate over a short time step).

prediction, SL prediction, NG prediction, PINN

0.378 0.378 0.408

0.3364 0.3364 0.364

0.294 0.294 0.320

2 2
0.252 0.252 0.276

0.210p 0.2100

0.232

0.168

0.168 0.188

0.128° 01262 0.144

0.084 0.084
-4

0.042

0.100
—4
0.042 SR

0.0086 0.000¢ 0.012

5/12

So far

Examples

« Incompressible Euler:

approximation

o — N w E= W (=]
i i L i L

—

\

o
.
.
o

approximation

~—
o 2 4 6

4.16
3.12
2.08
1.04
0.00
-1.04
-2.08
-3.12
-4.16

2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0

ux

6

46.0
345
23.0
11.5
0.0
-11.5
-23.0
-34.5
-46.0
-57.5

1.260
0.945
0.630
0.315
0.000
-0.315
-0.630
-0.945
-1.260

0 4

[«)

46.0
34.5
23.0
11.5
0.0
-11.5
-23.0
-34.5
-46.0

8 i
09
0.6
03
0.0
-0.3
-0.6
-0.9
-1.2

6/12

So far
Flow learning/model learning

« Let a parametric ODE:

du(t,0) = F(ut,0),0)
u(0,8) = uy(0)

Definition (Flow): The flow &, g is defined by u(t, 0) = ®; ¢(uy(0)). It is the resolvent of the system.

 In Scimba we can learn a nonlinear approximation of a parametric flow:
» discrete or continuous flow in time.

» classical or symplectic flow (associated with Hamiltonian systems).
» optimization over complete trajectories (to be validated).

Remark (Application): These flow learning can be used to learn latent variable dynamics in order reduction.

7/12

So far

Examples

« Classique §-PIC

£(t,%,v) = 28 (x,v) + Y wid(x — Xy (£))3 (v — Vi (b))

« Hybrid PIC: add a NN approximation

f(t,x,v) = finit((@en ©...0 @91)(X7V)) + Zwké(x — X (£))0(v — V()

f(x,v) at t=20.00

8 0.4

6
4 03

2
02

0

-2
0.1

-4
-6 0.0

-8

fix,v) at t=20.00

8 0.30

6
025

4
0.20

2
0 015

-2
0.10

-4
0.05

-6
-8 0.00

0.2

0.1

0.0

-0.1

-02

0.2

0.1

0.0

—0.14

-0.2

rho(x) at t=20.00

E(x) at t=20.00

k=1

0.4

0.2

0.0

-0.2

-0.4

| | | |
@ o & N o N & o

)

rho(x) at t=20.00

o

E(x) at t=20.00

o

k=1

fix,v) at t=20.00

0.30

0.25

0.20

0.10

0.05

0.00

rho(x) at t=20.00

E(x) at t=20.00

0.2 §
0.4
0.1
0.2 4
0.0
0.0 4
-0.1
-0.2
-0.2 -0.4 4
0 2 4 6 8 10 12 o 4 6 8 10 12

Electric energy. E, = 0.04, E, =021

21 === Control variate
| oo Semi-Lagrangian

—— 4§ Neural FBL

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time £

8/12

So far

Example code

« link(“https://www.scimba.org”)

9/12

https://www.scimba.org

Future

Ongoing work in torch version

Remark (Adaptive sampling in Torch): Learning can be difficult if the PDE has very localized phenomena
(shocks, interfaces, ...). To avoid too many collocation points, we can use adaptive sampling strategies.

« In practice, we use a generative model to dynamically learn pg(x) ~ | 92R(ug) |? (or other)
» Models:

» flow matching
» normalizing flow
» optimal transport

10/12

Future

Ongoing and futur works in Jax

 Neural operators works:

» Neural operators (Fourier, transformer, Green’s function) accurate and general in mesh and geometry.
» Structure-preserving neural operators (symplectic, dissipative) + PDE flow learning
» Rom based on Invertible networks + POD

Example: Accurate NO for Helmholtz in heterogeneous medium + generative NO for the inverse problem
(with V. Italiano Numpex)

Objectives (Current development in Jax):

Neural operator

Adding optimizers

Adding features: multi-subdomain, multiple BC, DD etc

Domain decomposition: One PINNs per subdomain with overlaps (FBPINNs methods). Partitioning with
GMSH

Matrix-free + block preconditionning Natural gradient for FBPINNs. Extension to other optimizers
Efficient linear algebra? Coupling with C++7?

11/12

Future

Hybrid DG

Remark: uses significantly fewer degrees of freedom than a conventional code starting from dimension 3.
- fewer calculations? only in larger dimensions

o less memory ==> in an HPC context, less communication

Remark: The lack of guarantees of these methods is a limitation. Weak control on the error and stability.

Objectives: hybrid approaches and restore convergence
guarantees. Focus on coupling with multi-patch DG methods.

 Idea 1: The network roughly captures a set of solutions
(parametric PINNs, NO. We enrich the DG space (basis, mesh,

Base enrichie ‘ Matrice mieux conditionnée

AQA PC) with the prediction.
. ¥ e Idea 2: DG between macro cells with PINNS.

« Idea 3: Invertible change of coordinates/variables which
simplifie the solution for the DG space

12/12

	1. Scimba
	1.1. So far
	1.2. Future

