

Liberté
Égalité
Fraternité

PROGRAMME
DE RECHERCHE
NUMÉRIQUE
POUR L'EXASCALE

Exascale Optimization

WP5

Presented by
Prof. El-Ghazali Talbi

Objectives and tasks of WP5

Objectives

- Solving **large-scale optimization** problems (decision variables, many-objectives, expensive objectives, big data) using **Exascale optimization algorithms**
- **Continuous, and discrete optimization problems**

Tasks

1. **Exascale discrete and continuous optimization**
 - Exact optimization (Branch and bound, tree search)
 - Heuristic optimization (Computational intelligence)
2. **Exascale surrogate-based and Bayesian optimization**
 - Parallel coupling of surrogates, optimization and sampling
3. **Exascale shape optimization**
 - Involving multi-physics models
4. **Exascale optimization for AutoML** (Optimization of deep/large ML models)

Main Partners

- Inria Bonus
- Unistra
- 2 Phds
- Still to recruit
 - 1 Engineer
 - 1 Postdoc

Sommaire

1. Intra-WP meeting

1. Future scientific challenges
2. Recruitment

2. Scimba and WP5

1. Multi-objective optim.
2. AutoML

3. Uranie and WP5

1. Uncertainty quantification for AutoML
2. Parallel Bayesian Optimization

1. Intra-WP meeting

Future work

Scientific challenges

- **Exascale Parallel Bayesian Optimization based on Fractal optimization**
- **Resilience against faults**
- **Fault-tolerance strategies**
 - Same strategies for **both** classical and Bayesian optimization
 - Process failure → Recovery mechanisms → Reconstruction of fractals (**low memory and time complexity**)
 - Global failure → Checkpointing → **Reduced I/O, distributed algorithm**
 - **Recovery** → Independant subproblems, local surrogates

Future work

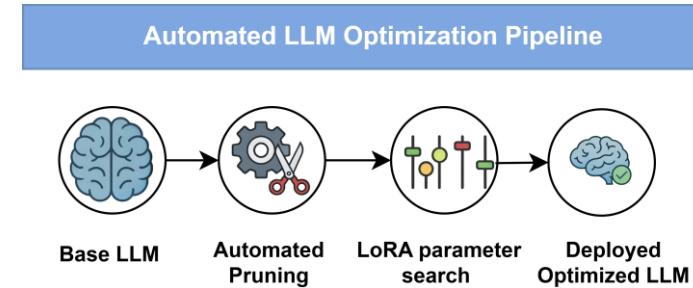
Scientific challenges

- **Generic framework for PDE-constrained optimization**
 - Shape optimization under parametric PDE constraints
 - Shape optimization with geometric constraints
 - High-dimensional shape optimization
 - Potential applications:
 - Mechanics,
 - Heat transfer

Future work

Scientific challenges

- **Application to AutoML - LLMs**
 - Fine tuning
 - Pruning
- **Application to AutoML - Spiking Neural Networks**
 - Hyper-parameter optimization
 - Architecture Search



Problem consists in finding the **optimal** ML model a^* maximizing f (**accuracy & other objectives**):

$$a^* = \arg \max_{a \in A} f(\Theta(a, d_{train}), d_{valid}) = \arg \max_{a \in A} f(a)$$

- Regression: RMSE (Root Mean Squared Error)
- Multi-class classification: Cross-entropy

Future work

Recruitment strategy WP5

- **Already recruited: 2 PhD students (INRIA Bonus, Uni Strasbourg)**
- **To recruit 1 Engineer**
 - Exascale [Bayesian] optimization algorithms
 - Software Zellij
- **To recruit 1 Postdoc** Exascale AutoML
 - Heterogeneous computing
 - Quantum-HPC → Neuromorphic-HPC → Quantum-Neuromorphic-HPC

2. Scimba and WP5

Scimba and AutoML

- **Scimba** : Python library that implements varying **Scientific Machine Learning (SciML)** methods for **PDE problems**, as well as tools for hybrid numerical methods.
- Solves parametric PDEs using various **nonlinear approximation spaces** such as **neural networks**, low-rank approximations, and nonlinear kernel methods.
- Compatible with both **space–time algorithms** (PINN, Deep Ritz) and **time-sequential** ones (**discrete PINNs**, neural Galerkin and neural semi-Lagrangian schemes).

Scimba and AutoML

- Current PINNs are not very sensitive to hyperparameters,
 - involve homogeneous & small architectures
 - Efficiency of Natural gradient
- Nowadays, Neural Architecture Search (NAS) for PINNs not essential. Good optimization methods (e.g. Natural gradient, Anagram, SS-Broyden) are more crucial.
- More complex future architectures including **Transformers**, ...
 - Hyper-parameter optimization
 - Neural Architecture Search (NAS) PINNs
- Use of Auto-ML strategy: Automatic selection of deep neural networks for neural operator-type methods

Scimba and Multi-objective optimization

- Multi-objective optimisation in PINNs (one residual per equation + boundary conditions)
 - Navier-Stokes : 3 equations ou plus
 - Many EDPs → **Many objectives** (Loss functions) → Pareto optimal solutions
 - Domain decomposition → Multi-PINNs (FBPINNs, Finite Basis PINNs)
- **Multi-objective optimization**
 - **Pareto-based optimization to generate the Pareto front**
 - **Extension of Exascale Fractal optimization to multi-objective optimization**

3. Uranie and WP5

Uranie is a software framework dedicated to uncertainty quantification sensitivity analysis, calibration and or generation of surrogate-models, optimisations, etc.

- Design-of-experiments generation
- Surrogate-models generation and training
- Sensitivity analysis methods
- Uncertainty dedicated visualisations tools
- Parametric optimisation methods (mono and multi-criteria, with or without constraint)
- Calibration methods, with or without uncertainties, with *a priori* knowledge for Bayesian estimations for instance.

Uncertainty quantification for optimization and AutoML

- Global sensitivity analysis for optimization with variable selection
- **Hilbert-Schmidt Independence Criterion (HSIC):** HSIC-based sensitivity analysis to interpret and optimize ML models hyperparameters
- Hyperparameter analysis to design online **hierarchical multi-step approach** involving different variables
- Design of more algorithms for hyperparameter optimization for **LLMs (Large Langage Models)** and **SNNs (Spiking Neural Networks)**
- Achieving competitive and cost-effective performance across machine learning and scientific tasks.
- Make hyperparameter optimization more interpretable.

Bayesian optimizer ?

- Uranie: Use of the **EGO** method (Efficient Global Optimization) → **Intrinsically Sequential Algorithm**
- Towards **Exascale Bayesian Optimization Algorithms**

Design

- Search space decomposition based on Fractals
- Low complexity (exploration, exploitation, tree search)
- Massively parallel → Exascale
- Handle very expensive objective functions

Implementation

- Will handle fault-tolerance
- Efficient heterogeneous implementation (load balancing, ...)
- Portability on various heterogeneous architectures (CPUs, GPU)

