

ExaMA Work Package 6 -- Feedback Session

Uncertainty Quantification

J. Garnier (X), C. Gauchy (CEA)

January 21, 2026 – NumPEX General Assembly

ExaMA – Exa-scale Methodologies and Algorithms

Key Takeaways

Key Takeaways from the GA

- Takeaway 1: Exascale applications are storage intensive: developments of online algorithms
- Takeaway 2: Need for good tools for visualization of uncertainties for exascale computations, in particular for high-dimensional outputs
- Takeaway 3: Fractal-based BayesOpt, adaptation for UQ ?

Discussions Summary

Main Discussion Points

- Discussion 1: HPC computation is storage intensive. Sometimes the storage of all ensemble runs is not possible. Online algorithms are dedicated to tackle this issue (i.e. only store a current simulation and delete it after aggregation into dedicated statistical information).
- Discussion 2: Questions about the visualization of uncertainties of (very) high dimensional data (physical fields). Definition and estimation of vector or functional quantiles.
- Discussion 3: Fractal-based Bayesian Optimization is exascale ready. Reflexion about the possibilities to adapt this algorithm for UQ.

Feedback from Other WPs

WP1 \emptyset

WP2 Interested by Global Sensitivity analysis tools (HSIC indices) from URANIE

WP3 \emptyset

WP4 Interested by multi output Gaussian process regression, visualization and online estimation of statistical quantities (quantiles, ...)

WP5 Explanation to WP6 about fractal-based Bayesian Optimization, interested by Global Sensitivity analysis (HSIC indices) tools from URANIE

New Collaborations

- Collaboration opportunity 1: HiDALGO2 project for simulation using `feel++` of energetic consumption of buildings in a city (online estimation, visualization)
- Collaboration opportunity 2: ICI project between IGN & INRIA about epidemic propagation simulation at a individual scale (agent-based model)
- Collaboration opportunity 3: Improve the pruning of LLM using global sensitivity analysis tools developed in URANIE (in particular, HSIC sensitivity analysis, well adapted for arbitrary, independent samples)

Adjustments

Adjustments to WP6 Plans

- Adjustment 1: Take into account online learning algorithms (all tasks impacted)
- Adjustment 2: Help WP5 to use URANIE for their exascale app

Updated Priorities

1. Priority 1: multivariate quantiles with a peculiar focus on visualization:
 - quantization methods for vector or functional outputs (example: water level map for flooding visualization, by Jeremy Rohmer and Charlie Sire)
 - quantiles based on statistical depth functions (Monge-Kantorovich depth for instance)
 - nonparametric multiple-output quantile regression, measure-transportation-based quantile regression, quantile autoregression method, by Marc Hallin
 - desired properties : visualization (contour levels, bagplot, ...), guarantees for nested quantile domains, ...
2. Priority 2: Take into account online learning algorithms
 - define aggregation formulas for scalar, vector, functional quantiles (extension of Welford algorithm limited to moments)
3. Priority 3: HSIC sensitivity analysis
 - scalable method to be promoted towards other WPs
 - first version available in Uranie

Conclusion

Summary and Next Steps

- WP5 and WP4 are interested in URANIE and/or scientific developments in WP6 (e.g. visualization & online learning)
- Keep in touch with WP5 for helping them to install & run URANIE on their applications

Thank you!