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Two main objectives
« Ultra-fast surrogate models of complex physical problems
« Strategies for leveraging surrogates in multifidelity modeling

Methodological approaches

« Data-driven: reduced basis methods (RBM) and Deep Neural Networks (DNN)
* Model-driven: Physics-Based Neural Networks (PBNN)
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T2.1 — Surrogate models based on PINNs

T2.2 — PDE operator learning with Neural Operators

T2.3 — Data-driven model order reduction

T2.4 — Non-intrusive reduced basis methods for parametric problems
T2.5 — Multifidelity modeling

T2.6 — Real-time models with super resolution methods
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T2.1 — Surrogate models based on PINNs
Multilevel distributed PINNs for frequency-domain acoustic problems
PhD thesis of Daria Hrebenshchykova (Atlantis@Inria and Macaron@lnria teams)

Key points

* Helmholtz equation in 2D with PML (Perfectly Matched Layers) domain truncation
* FBPINNSs (Finite Basis PINNs): Schwarz type domain decomposition

* MFBPINNs: multilevel version

* Implemented in Scimba

* Energy Nature Gradient (ENG) optimization method
Dissemination
* DD29 presentation, Milano, June 2025 (paper accepted in proceedings)
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Multilevel distributed PINNs for frequency-domain acoustic problems
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T2.1 — Surrogate models based on PINNs
Semi-Lagrangian neural methods for convection diffusion in large dimension
Key points

* Sequential in time neural based methods

* Transport of collocation points + projection on neural network space

* Natural Gradient optimizer + adaptive sampling

* Implemented in Scimba

* Characteristic approximation for diffusion

Results

* More accurate methods (compared to classical SL methods) after dimension 4
* Lower memory consumption

Dissemination

* Publication in CMAME, several presentations
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Semi-Lagrangian neural methods for Vlasov
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T2.2 - PDE operator learning with Neural Operators
Neural network for preconditioning

* Postdoc of Y. Xiang and M. Shpakovych S
(Inria — Airbus — Cerfacs @Concace) )
* Solution of 2D Helmholtz equation with 2]
random velocity field, PML o
* Trained neural network used as a
preconditioner for FGMRES in mixed 107
arithmetic

1040
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Generalization with respect to the size of the
domain, learning performed with a=1
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T2.2- PDE operator learning with Neural Operators
Learning to smooth: enhancing multigrid solvers with data

109,
LS —e— Learned
1 1 1 =2 -=- Classical multigrid (Jacobi
¢ SOIUtlonOf 2D POISson USIng ,gi = — g:assica: mu:tigrig :JGau:s)-Seidel)
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* Trained Neural Networks used as f:(, 107
smoothers in the multigrid solver J 107
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(d) N =512 and L = 6
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T2.2 — PDE operator learning with Neural Operators
Neural operator coupled with classical code

Key points

* Fourier Neural operator to predict solutions of nonlinear elliptic PDE
* Classical scheme: FD + Newton-Krylov methods

* ldea: use the neural prediction as initial guess

* Full scheme is converged

Results

* CPU time gain 80-90% (close to divided by 2) on fine grids, and more on coarse grids
* On the considered benchmark, no situation of convergence fails
Dissemination

* Publication in Nonlinear simulation, several presentations
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T2.3 — Data-driven model order reduction
Hybrid numerical methods for reduced modeling
Key points

* Work between Makutu@lnria and Macaron@Inria

* PINNSs for parametric problem interesting but not accurate

* Idea 1: train parametric PINNSs offline + enriching of FE basis with PINNs prediction

* Idea 2: online prediction on coarse grids since the basis is more expressive

Results

* For linear elliptic problem enrich FE allows to use mesh 3-4 coarser for same accuracy

* For 1000 parametric solutions solved we divide the full CPU time by 10 to 100
Dissemination

*  Work submitted to M2AN, several presentations
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Hybrid numerical methods for reduced modeling
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T2.4 — Non-intrusive reduced basis methods for parametric problems
Nonlinear compressive reduced basis method

PhD thesis of Hassan Ballout (Université de Strasbourg)
Objective

« Mitigate the Kolmogorov barrier (for linear approximations)
Main assumption

* Only a few (first n) coefficients in a linear approximation are meaningful DoFs

n N

n,N __ j

Up = § :ai,usoi + E : (4 (al,l-w e '?O‘n,u)‘/’j’
=1 j=n+1

Proposed methodology
« Linear encoder: projection on the first few modes

* Nonlinear decoder: involves a nonlinear model W to predict the remaining coefficients

16
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T2.4 — Non-intrusive reduced basis methods for parametric problems
Nonlinear compressive reduced basis method

Choice of n
* Locally: n = p, where p is the number of parameters in parametric PDE

« Taylor + Davis-Kahan Matrix perturbation analysis - In preparation
» Globally: no upper bound, but in practice itisn £ p

Improved version when the parameter is known
« Use it to predict the last coefficients
» Solve for the first ones

» This approach is more stable and preserves the linearity of the problem

17
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T2.4 — Non-intrusive reduced basis methods for parametric problems
Nonlinear compressive reduced basis method
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Predicting the N-n last coefficients from the first n ones for a linear elliptic problem

The choice of the nonlinear model is crucial for both accuracy and efficiency
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In relation with T2.1

« Multi GPU natural gradient + preconditioning for natural gradient

» Other efficient optimizers

« Adaptive sampling and optimal transport

» More efficient FBPINNs/MLFBPINNs and general geometry with domain decomposition

* More guarantees for PINNs

» Applications: waves and seismology, radiative transfer, plasmas for fusion, optical
waves

In relation with T2.2

* Accurate neural operator for Helmholtz

« Structure preserving and invertible neural operator

* Neural operator for Maxwell

* New optimizers for neural operator + low rank/multi pole, approximation ?

» Work with unstructured meshes and GNNs / Transformers il linear system solvers

20
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