

WP5 : Optimization

Prof. El-Ghazali TALBI

Objectives and tasks

Objectives

- Solving large-scale optimization problems (decision variables, many-objectives, expensive objectives, big data) using Exascale optimization algorithms
- Inverse, continuous, and discrete optimization problems

Tasks

1. **Exascale discrete and continuous optimization**
 - Exact optimization (Branch and bound, tree search)
 - Heuristic optimization (Computational intelligence)
2. **Exascale surrogate-based and Bayesian optimization**
 - Parallel coupling of surrogates, optimization and sampling
3. **Exascale shape optimization**
 - Involving multi-physics models
4. **Exascale optimization for AutoML** (Optimization of deep/large ML models)

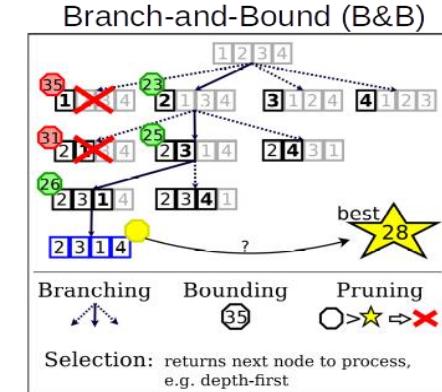
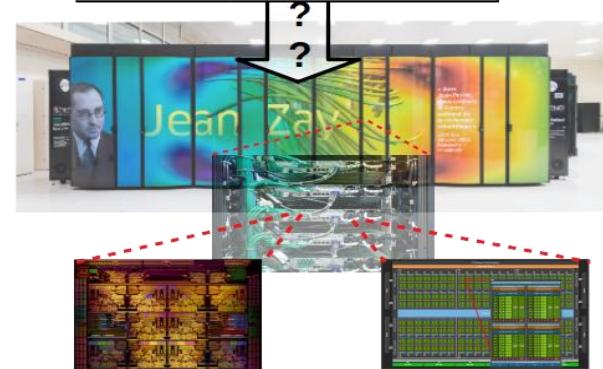
Main Partners

- Inria Bonus
- Unistra
- 2 Phds
- Still to hire
 - 1 Engineer
 - 1 Postdoc

Progress made

1. Discrete optimization

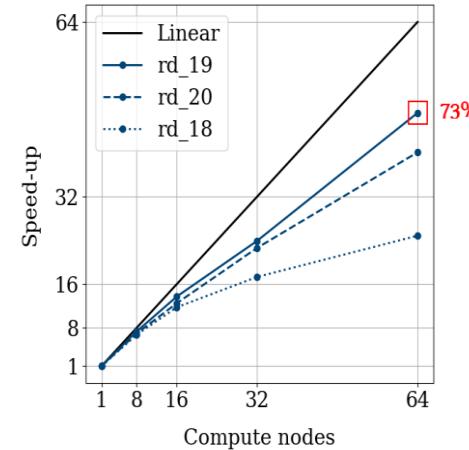
- Scaling Branch and Bound (B&B) algorithms
- Design of ultra-scale B&B dealing with both ...
 - Search tree and supercomputer characteristics: **large, heterogeneous, unreliable**
 - ➔ Scalable and unified data structures
 - ➔ Work Stealing-based load balancing at different levels
 - ➔ Handling of **GPU**-based heterogeneity at the intra-node level
- Investigation of MPI+X vs. PGAS (Chapel)
- Solving hard pending discrete benchmarks (e.g. scheduling)



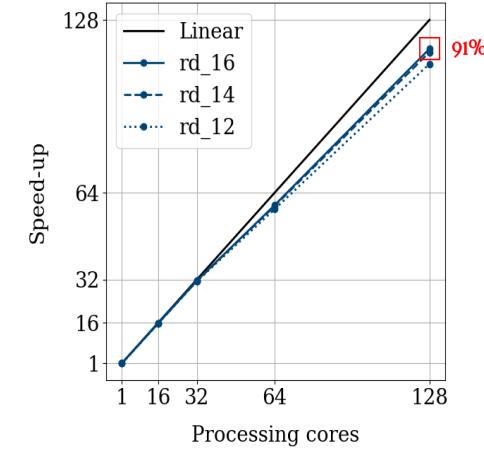
1. Discrete optimization

- Experimentation on ultra-scale supercomputers (CPU/GPU)
 - Frontier, LUMI, Perlmutter, TGCC/Irene, MeluXina, ...
 - Up to 51 200 CPU cores and 1 024 GPUs
- High scalability

Intra-node



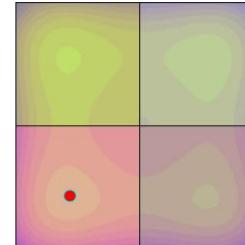
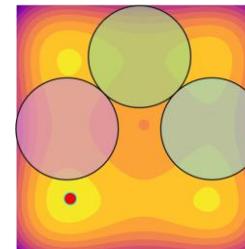
Inter-node



1. Continuous optimization

New Innovative Algorithms: Decomposition-based methods

- Fractal-based decomposition
- Exascale scalability
- Software framework Zellij
 - Tree search (non regular, dynamic)
- MPI + Kokkos
- Portability
- Multi-node, multi-GPUs



Exascale Optimization Software

Ultra-Portable & User-Friendly

Simple User Interface

- Define search space
- Specify objective function
- Set budget & constraints

Results
(optimum, metrics)

Single API Call

Exascale Optimization Engine

- ✓ Exascale scalability
- ✓ Performance portability
- ✓ Runs on any architecture

Performance-Portable Backend

- ✓ MPI
- ✓ Kokkos

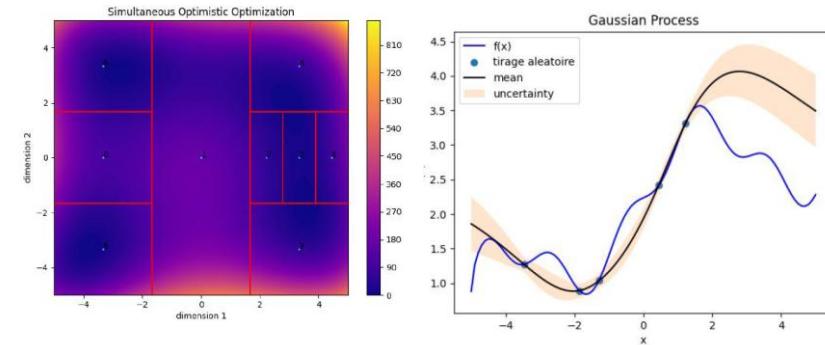
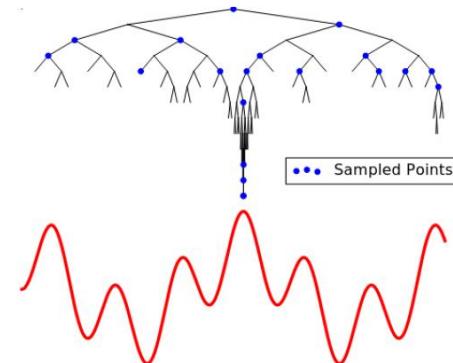
Heterogeneous Node Support

- ✓ CUDA
- ✓ HIP
- ✓ CPU
- ✓ Future

Exascale System (Multi-Node / Multi-GPU)

2. Bayesian and surrogate-assisted optimization

- Fractal based Bayesian Optimization
 - Exploration based on Fractals decomposition
 - Scoring based on acquisition functions on Fractals
- Surrogate-assisted for Fractal optimization
 - Any Supervised ML model can be used : GP, ...

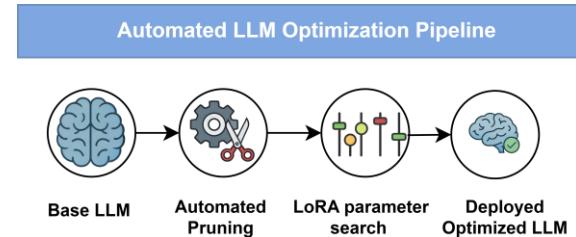


3. Inverse shape optimization

- **Development of a complete mathematical framework**
 - PDE-constrained shape optimization (Poisson problem)
 - Shape deformation via **volume-preserving ODE flows**.
- **Key message:** A constrained shape optimization problem is reformulated into a parametric optimization framework suitable for large-scale computation.
- **Software development & HPC-oriented design**
 - **Open-source software package** (GeSONN)
 - **HPC-driven design choices** : Multiple independent PDE solvers, Gradient evaluations, neural network training on GPUs
- **Numerical scalability & computational challenges**

4. AutoML optimization

- **AutoML**
 - Deep neural networks, spiking neural networks, LLMs
 - Hyper-parameter optimization, neural architecture search of DNN, SNNs
 - Fine tuning, Pruning of LLMs
- **Target optimization problems**
 - Big mixed optimization problem (i.e. very expensive objective function)
 - Variable-size search space
 - Multi-objective: Accuracy, energy consumption, complexity, ...
- **Optimization algorithms**
 - Evolutionary algorithms
 - Bayesian optimization
 - Ultra-scale Fractal-based Bayesian optimization



Scientific highlights

1. Fractal-based Bayesian Optimization

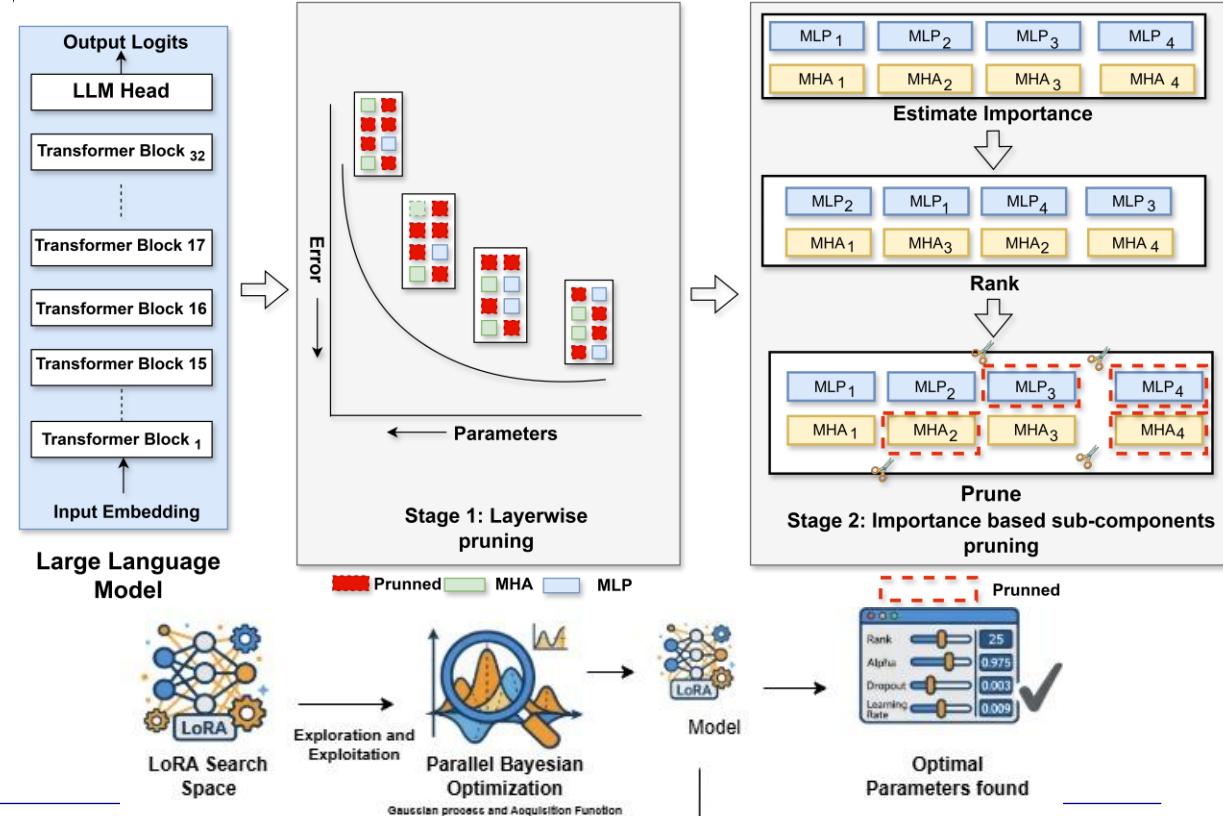
- **Exascale ready**
- **Superlinear speedup** thanks to the distributed multiple surrogate approach peaking at 10 nodes with 463.1%
- Up to **84.4% strong scaling** efficiency at **1000 Lumi-G nodes – 8000 GPUs**

Nodes	Speed up	Scaling Efficency
1	1.0×	100.0%
10	46.3×	463.1%
100	227.8×	227.7%

Nodes	Speed up	Scaling Efficency
100	1.0×	100.0%
200	3.2×	159.7%
1000	8.5×	84.4%

2. Hierarchical Two-Stage Pruning for Efficient LLMs

- A two-stage strategy for **LLM pruning & fine tuning**
- Hierarchical decomposition of the search space
- **Multi-objective Bayesian algorithm** to find Pareto optimal architectures
 - Accuracy
 - Complexity



Pruning and fine tuning of LLMs results

- Evaluation of the **Llama-2.7b** (6,74B paramètres) pruned with 30% sparsity ratio on multiple benchmarks
- Assessment on multiple benchmarks: ARC-Easy, ARC-Challenge, PIQA
- Proposed approach shows **overall better performance**
- Experimental Setup: The results are evaluated on same pruning ratios

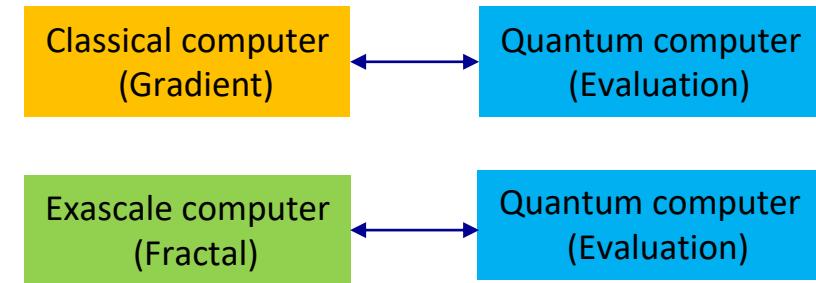
Method	ARC-Easy	ARC-Challenge	PIQA	Average
SliceGPT [1]	51.77	31.23	63.55	48.85
LLM Surgeon [2]	60.72	36.69	63.55	53.65
DISP-LLM [3]	60.10	37.03	73.72	59.90
AMP [4]	64.31	39.85	74.21	59.45
2SSP [5]	52.65	27.39	70.29	50.11
Proposed (Ours)	73.23	40.52	76.93	63.56

Next steps

1. Optimization

- Fault-tolerance
- Application to Variational Quantum Eigen Solver problems
 - Classical VQE
 - Sequential Gradient algorithm on classical computer
 - Quantum evaluation of solutions
 - Our new approach
 - Fractal algorithm on Exascale computer
 - Exascale-ready preliminary results
 - Completely black-box
 - Efficiency at 1000 nodes of Lumi-G corresponding to 8000 GPUs
 - Aggregate theoretical peak **383 PFLOP/s in double precision**

2. Bayesian Optimization



3. Inverse optimization

- **Reach constraints in shape optimization**
- **Scaling up with HPC**
 - Extension to realistic 3D problems: complex geometries, complex topologies
 - Full exploitation of HPC resources: Distributed neural network training, Hybrid CPU/GPU workflows.
- **Long-term perspective**
 - Generic framework for: PDE-constrained optimization and shape optimization under geometric constraints.
 - Potential applications:
 - Mechanics,
 - Heat transfer
 - Engineering design
- Clear positioning at the interface of **Mathematical Analysis – SciML – High-Performance Computing**.

4. Exascale AutoML

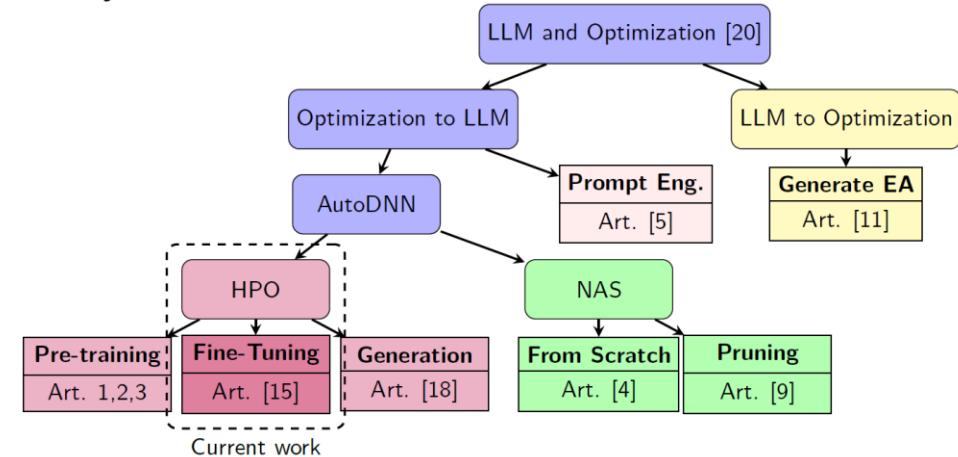
- Application of Exascale Parallel Bayesian Optimization

- LLMs

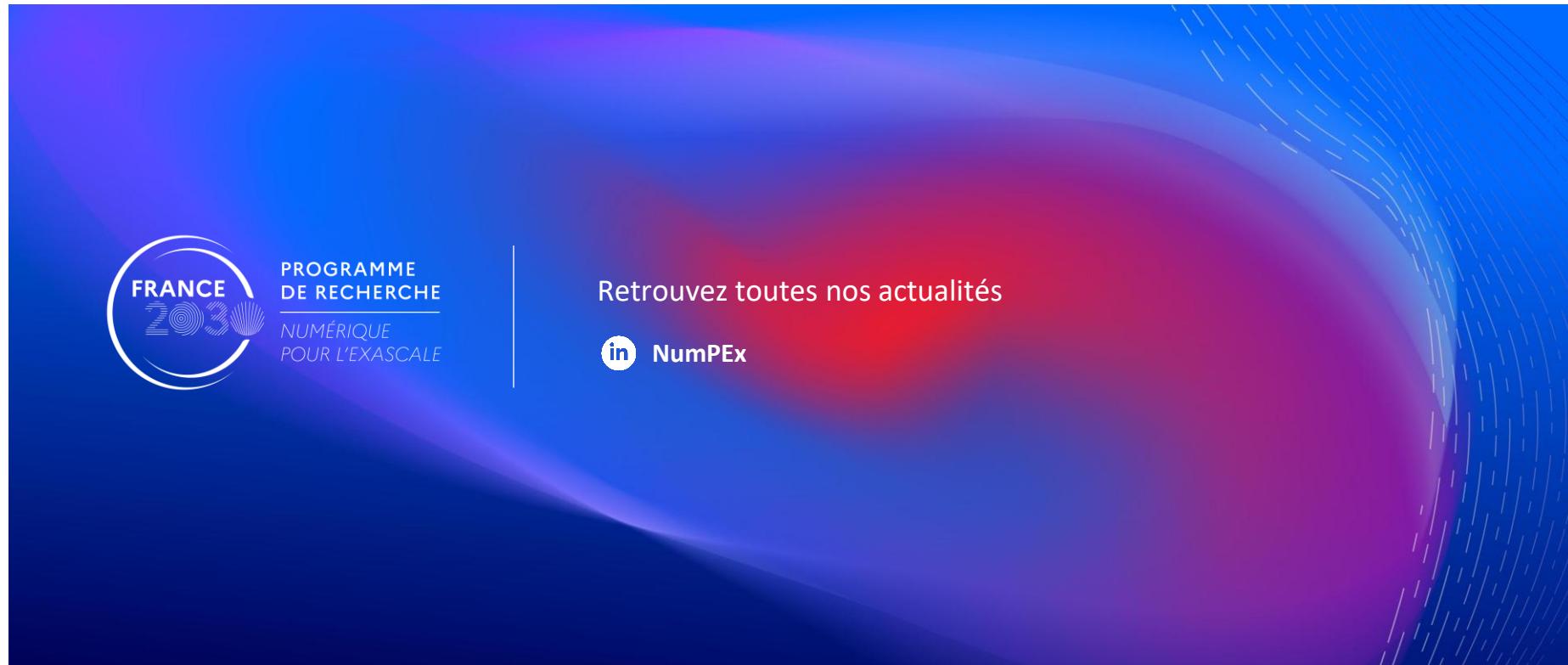
- Fine tuning
- Pruning

- Spiking Neural Networks

- Hyper-parameter optimization
- Architecture Search



Liberté
Égalité
Fraternité



PROGRAMME
DE RECHERCHE
NUMÉRIQUE
POUR L'EXASCALE

Retrouvez toutes nos actualités

 NumPEx

